Publicado el 15 de Mayo del 2019
1.232 visualizaciones desde el 15 de Mayo del 2019
2,4 MB
58 paginas
Creado hace 9a (25/01/2016)
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Compiladores: compilación de
expresiones regulares
Francisco J Ballesteros
LSUB, URJC
http://127.0.0.1:3999/s05.regexp.slide#1
Page 1 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Expresiones regulares
En este tema vamos a
definir expresiones regulares sencillas
implementar un compilador predictivo para las mismas
implementar un intérprete que las ejecute
Normalmente mejor hacerlo como lo hizo Ken Thompson
Ken regexps by Russ Cox (http://swtch.com/~rsc/regexp/regexp1.html)
Nosotros vamos a hacerlo paso a paso
http://127.0.0.1:3999/s05.regexp.slide#1
Page 2 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Expresiones regulares
Para nuestros propósitos, una regexp será:
Cualquier runa sin significado especial, r
encaja con ella misma
La runa .
encaja con cualquier runa
Dos expresiones a y b concatenadas ab
encajan si un prefijo encaja con a y el sufijo con b
La expresión a|b
encaja si encaja a o encaja b
http://127.0.0.1:3999/s05.regexp.slide#1
Page 3 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Expresiones regulares
La expresión a*
o el string vacío, o encaja como a, o como aa, ...
La expresión (a)
encaja igual que la expresión a
La expresión \r
encaja con la runa r
http://127.0.0.1:3999/s05.regexp.slide#1
Page 4 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Gramática
Podríamos utilizar esta gramática:
RE ::= TERM OPTS
OPTS ::= '|' TERM OPTS | <empty>
TERM ::= ATOM ATOMS
ATOMS ::= ATOM ATOMS | <empty>
ATOM ::= rune STAR | '(' RE ')' STAR
STAR ::= '*' | <empty>
Vamos a hacer que el scanner se ocupe de los
escapes de runas especiales
La gramática fuerza a precedencia de los operadores
http://127.0.0.1:3999/s05.regexp.slide#1
Page 5 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Lex
Utilizaremos rune como token.
type lex struct {
txt []rune
Debug bool
}
type Lexer interface {
// return next token
Scan() (rune, error)
// Look ahead one token
Peek() (rune, error)
}
func NewLex(s string) *lex {
return &lex{txt: []rune(s)}
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 6 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Lex
Y marcamos las runas especiales
const (
runeop rune = 0x40000000
runeops = "|*.()"
Or = runeop | '|'
Star = runeop | '*'
Lpar = runeop | '('
Rpar = runeop | ')'
)
http://127.0.0.1:3999/s05.regexp.slide#1
Page 7 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Lex
func (l *lex) scan() (rune, error) {
if len(l.txt) == 0 {
return 0, io.EOF
}
r := l.txt[0]
l.txt = l.txt[1:]
if r == '\\' {
if len(l.txt) == 0 {
return 0, fmt.Errorf("unexpected EOF")
}
r := l.txt[0]
l.txt = l.txt[1:]
return r, nil
}
if strings.IndexRune(runeops, r) >= 0 {
r |= runeop
}
return r, nil
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 8 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Lex
func (l *lex) Peek() (rune, error) {
old := l.txt
r, err := l.scan()
l.txt = old
return r, err
}
func (l *lex) Scan() (rune, error) {
t, err := l.scan()
if l.Debug && err == nil {
isop := t&runeop != 0
x := t & ^runeop
if isop {
fmt.Printf("scan <%c>\n", x)
} else {
fmt.Printf("scan '%c'\n", x)
}
}
return t, err
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 9 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Lex
Y podemos probarlo...
func main() {
txt := `ab|c*\*\`
l := NewLex(txt)
l.Debug = true
for {
if _, err := l.Scan(); err != nil {
fmt.Printf("error %s\n", err)
break
}
}
}
Run
http://127.0.0.1:3999/s05.regexp.slide#1
Page 10 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
Este es el parser con depuración, pero sin hacer nada más.
type Rexp struct {
l *lex
Debug, Debuglex bool
lvl int
}
func (re *Rexp) trz(tag string) {
if re.Debug {
s := strings.Repeat(" ", re.lvl)
fmt.Printf("%s%s\n", s, tag)
}
re.lvl++
}
func (re *Rexp) untrz() {
re.lvl--
}
func NewRexp(s string) *Rexp {
return &Rexp{l: NewLex(s)}
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 11 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
func (re *Rexp) Parse() error {
re.l.Debug = re.Debuglex
return re.parseRe()
}
// RE ::= TERM OPTS
func (re *Rexp) parseRe() error {
re.trz("re")
defer re.untrz()
if err := re.parseTerm(); err != nil {
return err
}
return re.parseOpts()
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 12 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
// OPTS ::= '|' TERM OPTS | <empty>
func (re *Rexp) parseOpts() error {
_, _, found := re.match(Or)
if !found {
return nil
}
re.trz("opts")
defer re.untrz()
if err := re.parseTerm(); err != nil {
return err
}
return re.parseOpts()
}
// TERM ::= ATOM ATOMS
func (re *Rexp) parseTerm() error {
re.trz("term")
defer re.untrz()
if err := re.parseAtom(); err != nil {
return err
}
return re.parseAtoms()
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 13 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
// ATOMS ::= ATOM ATOMS | <empty>
func (re *Rexp) parseAtoms() error {
re.trz("atoms")
defer re.untrz()
if err := re.parseAtom(); err != nil {
if err == io.EOF || err == ErrNoAtom {
err = nil
}
return err
}
err := re.parseAtoms()
if err == io.EOF || err == ErrNoAtom {
err = nil
}
return err
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 14 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
// ATOM ::= rune STAR | '(' RE ')' STAR
func (re *Rexp) parseAtom() error {
r, err := re.l.Peek()
if err != nil { return err }
if r == Lpar {
re.trz("paren")
defer re.untrz()
re.l.Scan()
if err := re.parseRe(); err != nil {
return err
}
_, _, found := re.match(Rpar)
if !found { return ErrNoParen }
} else if r & runeop != 0 && r != Any {
return ErrNoAtom
} else {
re.trz(fmt.Sprintf("'%c'", r&^runeop))
defer re.untrz()
re.l.Scan()
}
return re.parseStar()
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 15 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
// STAR ::= '*' | <empty>
func (re *Rexp) parseStar() error {
_, _, found := re.match(Star)
if !found {
return nil
}
re.trz("star")
defer re.untrz()
return nil
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 16 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Parsing
Y ahora podemos ver el árbol sintáctico...
func main() {
txt := `ab|(c*\*\))\`
fmt.Printf("parsing '%s'\n", txt)
re := NewRexp(txt)
re.Debug = true
err := re.Parse()
fmt.Printf("sts %v\n", err)
}
Run
http://127.0.0.1:3999/s05.regexp.slide#1
Page 17 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
¿Ahora qué?
Lo que queremos ahora es construir el AFND que
corresponde a la expresión regular.
El autómata lo interpretaremos luego para hacer matching
Hay que tener fresco cuál es el NFA para
una expresión regular
http://127.0.0.1:3999/s05.regexp.slide#1
Page 18 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Autómatas para expresiones regulares
NFA para
x
http://127.0.0.1:3999/s05.regexp.slide#1
Page 19 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Autómatas para expresiones regulares
NFA para
re1 re2
http://127.0.0.1:3999/s05.regexp.slide#1
Page 20 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Autómatas para expresiones regulares
NFA para
re1 | re2
http://127.0.0.1:3999/s05.regexp.slide#1
Page 21 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Autómatas para expresiones regulares
NFA para
re1 *
http://127.0.0.1:3999/s05.regexp.slide#1
Page 22 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
NFA
type NFA struct {
op rune // operator at this state
last *NFA // last state in this NFA
on []rune // runes we transition on
to []*NFA // states we transition to
id int // debug
}
var nfanodes []*NFA
func NewNFA(op rune) *NFA {
n := &NFA{op: op, id: len(nfanodes)}
nfanodes = append(nfanodes, n)
return n
}
El NFA representa un estado y guarda las transiciones
Todos los estados los guardaremos en un array para luego
http://127.0.0.1:3999/s05.regexp.slide#1
Page 23 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
NFA
Vamos a necesitar añadir una transición a un estado
func (n *NFA) trans(on rune, to *NFA) {
n.on = append(n.on, on)
n.to = append(n.to, to)
}
http://127.0.0.1:3999/s05.regexp.slide#1
Page 24 of 58
Compiladores: compilación de expresiones regulares - (c)2014 LSUB
1/25/16, 2:48 PM
Generación del
Comentarios de: Compiladores: compilación de expresiones regulares (0)
No hay comentarios