Mostrar los tags: c

Mostrando del 51 al 60 de 2.859 coincidencias
Se ha buscado por el tag: c
Imágen de perfil

Crear Modelo red neuronal CNN.


Python

Publicado el 14 de Enero del 2024 por Hilario (144 códigos)
573 visualizaciones desde el 14 de Enero del 2024
Con este ejemplo sencillo, pretendo explicar como realizar un ejercicio llamado: Crear_Modelo_CN_Aula-28.py, para entrenar una red neuronal convolucional (CNN), siguiendo varios pasos. Aquí te proporcionaré un resumen general de los pasos que puedes seguir utilizando bibliotecas como TensorFlow y Keras en Python. Ten en cuenta que esto es solo una guía básica, y dependiendo de tus necesidades específicas, es posible que debas ajustar algunos parámetros y configuraciones, incluso incrementar la dificultad del ejercicio.


Paso 1: Preparar tus datos.
--------------------------
Organizar tus datos:

Divide tus datos en conjuntos de entrenamiento y prueba. El conjunto de entrenamiento se utiliza para entrenar el modelo, mientras que el conjunto de prueba se utiliza para evaluar su rendimiento.
Asegúrate de tener etiquetas asociadas a cada imagen para supervisar el entrenamiento.

Preprocesamiento de imágenes:
----------------------------
Normaliza las imágenes (escala los valores de píxeles entre 0 y 1).
Redimensiona las imágenes según los requisitos de entrada de tu red neuronal.

Paso 2: Crear la arquitectura de la CNN.
---------------------------------------
Importar bibliotecas:

Importa TensorFlow y Keras.
Definir el modelo:

Crea un modelo secuencial (Sequential) o funcional de Keras.
-----------------------------------------------------------
Agrega capas convolucionales, capas de agrupación (pooling), y capas totalmente conectadas según tu arquitectura.

Paso 3: Compilar el modelo.
--------------------------
Compilar el modelo:
Especifica la función de pérdida, el optimizador y las métricas que se utilizarán para evaluar el rendimiento del modelo.
Utiliza el método compile de Keras.

Paso 4: Entrenar el modelo.
--------------------------
Entrenar el modelo:
Utiliza el método fit de Keras.
Proporciona el conjunto de entrenamiento y valida con el conjunto de prueba.
Ajusta el número de épocas y el tamaño del lote según sea necesario.

Paso 5: Evaluar el modelo.
-------------------------
Evaluar el modelo:
Utiliza el conjunto de prueba para evaluar el rendimiento del modelo.
Puedes usar el método evaluate de Keras.

Paso 6: Guardar el modelo entrenado.
----------------------------------
Guardar el modelo:
Utiliza la función save de Keras para guardar el modelo entrenado en un archivo.

PRESENTACION DE LAS IMAGENES DE ENTRENAMIENTO.
********************************************

Básicamente estamos hablando de dos formas:

[indent]CASO_1
*****

Imaginate que tengo estas imagenes:
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

[/indent]
*************************************************************************************
Sí, en tu caso, no hay clases específicas y solo tienes un conjunto de imágenes numeradas, simplemente colocarlas en orden jerárquico dentro del directorio de entrenamiento (train) es suficiente. La estructura que te proporciono como ejemplo refleja esa simplicidad.
Esta podría ser una ruta normal de archivos, al que llamamos en el directorio principal: ProyectoCNN

[indent]ProyectoCNN/
└── dataset/
└── train/
├── imagen_1.jpg
├── imagen_2.jpg
├── imagen_3.jpg
├── imagen_4.jpg
├── imagen_5.jpg
├── imagen_6.jpg
├── imagen_7.jpg
├── imagen_8.jpg
├── ...
└── imagen_124.jpg
[/indent]
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------

CASO_2.
*********

En nuestro ejemplo utilizaremos, este formato de almacenamiento (CASO_2.), para entrenar el modelo.

Bien, imaginate ahora que tenemos estos directorios de clase:

(En mi caso, con el fin de coger el concepto de su funcionamiento solo he aportado 3 imagenes para cada tipo. Por lo
que los resultados de la predicción son bastante pobre, para aumentar la eficacia debería hacerse con miles de imagenes. Ten en cuenta que habitualmente para train, los modelos ya entrenados que descargamos pueden rondar las 60.000 imagenes.)

[[indent]b]camiones:
--------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

turismos:
--------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

autocares:
----------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

motocicletas:
------------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg[/b]
[/indent]
Como organizarias las imagenes para entrenar un modelo CNN.
----------------------------------------------------------
En principio, nosotros las organizariamos como sigue. Sin duda
puede haber más opciones que puedes experimentar,siempre que des la ruta adecuada
de acceso a tu modelo:ProyectoCNN.
ProyectoCNN/
└── dataset/
├── train/
│ ├── camiones/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ ├── turismos/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ ├── autocares/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ └── motocicletas/
│ ├── imagen_1.jpg
│ ├── imagen_2.jpg
│ ├── ...
│ └── imagen_124.jpg
├── validation/
│ (mismo formato que 'train')
└── test/
(mismo formato que 'train')


En este ejemplo, he organizado las imágenes en tres conjuntos: entrenamiento (train), validación (validation), y prueba (test). Cada conjunto tiene subdirectorios para cada clase de vehículo (camiones, turismos, autocares, motocicletas). Esto es una práctica común al trabajar con modelos de aprendizaje profundo.

Espero que esto te ayude a estructurar tus datos para el entrenamiento de tu modelo CNN. Asegúrate de ajustar la división entre conjuntos de entrenamiento, validación y prueba según tus necesidades específicas.

**************************************************************************************************************
Los directorios "validation" y "test" son comúnmente utilizados en el entrenamiento de modelos de aprendizaje profundo, como las redes neuronales convolucionales (CNN), para evaluar el rendimiento del modelo en datos que no ha visto durante el entrenamiento. Aquí hay una breve descripción de cada uno:

Conjunto de Validación:
----------------------
Propósito: Se utiliza durante el entrenamiento del modelo para ajustar los hiperparámetros y evitar el sobreajuste (overfitting).

Composición:
---------------
Contiene datos adicionales que no se utilizan para entrenar directamente el modelo, pero se emplean para evaluar su rendimiento durante cada época (epoch) del entrenamiento.

Cómo se usa:
-----------
Después de cada época (epoch), de entrenamiento, el modelo se evalúa en el conjunto de validación. Esto permite ajustar los hiperparámetros del modelo para mejorar su rendimiento en datos que no forman parte del conjunto de entrenamiento.

Conjunto de Prueba (Test):
-------------------------

Propósito:
----------------
Se utiliza al final del entrenamiento para evaluar el rendimiento final del modelo en datos completamente nuevos que no se han visto en absoluto durante el proceso de entrenamiento.

Composición:
-----------
Contiene datos independientes que el modelo nunca ha visto ni durante el entrenamiento ni durante la validación.

Cómo se usa:
-----------
Una vez que el modelo ha sido entrenado y ajustado utilizando el conjunto de entrenamiento y de validación, se evalúa de manera final en el conjunto de prueba para obtener una estimación imparcial de su rendimiento en datos no vistos.
La separación entre conjuntos de entrenamiento, validación y prueba ayuda a garantizar que el modelo sea capaz de generalizar bien a datos no vistos y no se sobreajuste a los datos de entrenamiento específicos.

En resumen, el conjunto de validación es utilizado para ajustar los hiperparámetros y evitar el sobreajuste durante el entrenamiento, mientras que el conjunto de prueba proporciona una evaluación final del rendimiento del modelo en datos completamente nuevos y no vistos.
********************************************************************************************************************

Debes asegurarte, para no generar errores, que las rutas, en tu caso, sean exactas.
El ejercicio para generar el módelo tendría este código, que también te pongo en el editor de códigos:
----------------------------------------------------------------------------------
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Rutas de los datos de entrenamiento, validación y prueba
train_data_dir = 'ProyectoCNN/dataset/train'
validation_data_dir = 'ProyectoCNN/dataset/validation'
test_data_dir = 'ProyectoCNN/dataset/test'

# Parámetros
batch_size = 32
img_height = 64
img_width = 64

# Crear generadores de datos para entrenamiento, validación y prueba
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical') # 'categorical' ya que hay más de dos clases

validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')

test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')

# Construir el modelo CNN
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(4, activation='softmax')) # 'softmax' ya que hay más de dos clases

# Compilar el modelo
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

# Entrenar el modelo
model.fit(train_generator, epochs=10, validation_data=validation_generator)

# Evaluar el modelo en el conjunto de prueba
test_loss, test_acc = model.evaluate(test_generator)
print(f'Precisión en el conjunto de prueba: {test_acc}')

# Guardar el modelo
model.save('modelo_cnn_proyecto.h5')

**********************************************************************************************************
**************************************************************************************************************
Bien. En mi caso. Una vez creado el modelo con esta ruta: /home/margarito/python/modelo_cnn_proyecto.h5.
Necesito entrenar una red neuronal CNN, con el modelo: modelo_cnn_proyecto.h5 Que dada la ruta de esta
imagen de un turismo en esta ruta:/home/margarito/python/coche.jpeg . Me diga si es un camion,
una motocicleta, un coche, o un autocar.ñ

-----------------------------------------------------------------------------------------------------------
Después de haber entrenado tu modelo, puedes usarlo para hacer predicciones sobre nuevas imágenes.
Aquí tienes un ejemplo de cómo cargar el modelo y realizar una predicción sobre la imagen de un turismo:

import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np

# Cargar el modelo previamente entrenado
modelo = tf.keras.models.load_model('/home/margarito/python/modelo_cnn_proyecto.h5')

# Cargar la imagen de un coche
img_path = '/home/margarito/python/coche.jpeg'
img = image.load_img(img_path, target_size=(64, 64))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)

# Realizar la predicción
predictions = modelo.predict(img_array)

# Obtener las clases predichas
class_indices = {0: 'camiones', 1: 'turismos', 2: 'autocares', 3: 'motocicletas'}
predicted_class = class_indices[np.argmax(predictions)]

# Imprimir el resultado
print(f'Predicción: {predicted_class}')


------------------------------------------------------------------------------------------
Este script carga la imagen del coche, la preprocesa de manera adecuada para el modelo, realiza la predicción y luego imprime la clase predicha. Asegúrate de que la imagen esté en el formato adecuado y ajusta las rutas según sea necesario. Recuerda que el modelo fue entrenado con clases específicas ('camiones', 'turismos', 'autocares', 'motocicletas'), así que las clases predichas deben coincidir con estas categorías.

************************************************************************************
[b]El ejercicio fue realizado bajo plataforma Linux.
Concretamente:Ubuntu 20.04.6 LTS
Editado con:Sublime Text.
-------------------------
Se debe de tener en cuenta que en tu ordenador deberan estar cargadas las librerias necesarias.
En nuestro caso:
---------------
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
-------------------------------------------
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
************************************************************************************
Ejecucion de los programas:

#Crear_Modelo_CN_Aula-28.py
#Ejecución:python3 Crear_Modelo_CN_Aula-28.py
--------------------------------------------------
#Util_Modelo_Creado_Aula-28.py
#Ejecutar: python3 Util_Modelo_Creado_Aula-28.py
*******************************************************************************************************
Imágen de perfil

Transferencia de Estilo, redes CNN.


Python

Publicado el 9 de Enero del 2024 por Hilario (144 códigos)
527 visualizaciones desde el 9 de Enero del 2024
descarga-1
descarga-2

---------------------------------------------------------------------------------------------------------------------

Exponemos aquí un ejemplo de redes neuronales convolucionales CNN,
basadas en transferencia de estilo. Partiendo de una imagen original, y otra imagen que dará
la forma del estilo(en nuestro caso, un cuadro de Picaso), construiremos otra, basada en las dos anteriores.

El programa que citamos aquí está basado en en un ejemplo
del blog RUBENJROMO
https://rubenjromo.com/
Modificados algunos parámetros.
Editado y ejecutado en GoogleColab.
Archivos de muestra, alojados en DRIVE.
https://drive.google.com/

Modelo vgg19-dcbb9e9d.pth bajado de:
"https://download.pytorch.org/models/vgg19-dcbb9e9d.pth

*****************************************************************************

Las redes neuronales convolucionales (CNN) y la transferencia de estilo son conceptos distintos en el campo del aprendizaje profundo, pero a veces se combinan para lograr resultados interesantes en el procesamiento de imágenes. Aquí hay una breve descripción de cada uno:

Redes Neuronales Convolucionales (CNN):

Las CNN son un tipo de arquitectura de red neuronal diseñada específicamente para procesar datos de rejilla, como imágenes. Utilizan capas de convolución para extraer características relevantes de la imagen de entrada.
La convolución implica el uso de filtros o kernels que se deslizan sobre la imagen para realizar operaciones locales, lo que permite detectar patrones específicos, como bordes, texturas o formas.
Están compuestas por capas convolucionales, capas de activación (como la ReLU), capas de agrupación (pooling) y capas completamente conectadas.
Transferencia de Estilo:

La transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido de una imagen con el estilo de otra imagen de manera creativa.
Se basa en la idea de separar el contenido y el estilo de una imagen. La información de contenido se extrae de una imagen de referencia, mientras que el estilo se toma de otra imagen.
La red neuronal intenta generar una nueva imagen que conserve el contenido de una imagen de entrada pero adopte el estilo de otra imagen de referencia.
Cuando se combinan estas dos ideas, se puede aplicar la transferencia de estilo utilizando una CNN. La idea es utilizar una red preentrenada, como VGG16 o VGG19, para extraer tanto el contenido como el estilo de las imágenes. Luego, se optimiza una nueva imagen para que coincida con el contenido de una imagen de entrada y el estilo de otra imagen de referencia. Este proceso permite crear imágenes que fusionan el contenido de una imagen con el estilo artístico de otra.

En resumen, las CNN son arquitecturas de redes neuronales diseñadas para el procesamiento de imágenes, mientras que la transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido y el estilo de diferentes imágenes. Al aplicar la transferencia de estilo con una CNN, se pueden lograr resultados visualmente atractivos y creativos.
Imágen de perfil

Reproductor de música (nueva versión).


Python

Actualizado el 9 de Enero del 2024 por Antonio (77 códigos) (Publicado el 31 de Mayo del 2021)
9.842 visualizaciones desde el 31 de Mayo del 2021
Programa para reproducir archivos de audio que incorpora la posibilidad de crear una lista de favoritos.
El programa necesita de un archivo "json" que se generará al ejecutarse por primera vez.
Esta versión incorpora la posibilidad de reproducir secuencialmente la lista de favoritos, para ello se usará el botón "PLAY ALL" (dicha reproducción se podrá finalizar igualmente con el botón "STOP").
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
mpr
Imágen de perfil

Convolución con SciPy


Python

Publicado el 18 de Diciembre del 2023 por Hilario (144 códigos)
779 visualizaciones desde el 18 de Diciembre del 2023
Proponemos el sencillo ejercicio: Aula_28_CNN-repaso.py, con el fin de realizar un proceso de convolución, sobre una imagen en color gris, por lo que sólo tendremos un canal de profundidad en la misma.

Según le hemos pedido al programa, la imagen tiene las siguientes características:
Características de la imagen:
Dimensiones: (431, 770, 1)
Valor mínimo: 0
Valor máximo: 249
Valor medio: 23.887129498498407.


La particularidad de este ejercicio, es que utilizamos el modulo scipy, creado inicialmente sobre el año 2000, actualizado en revisiones, y aún bastante utilizado.

Las caracteristicas más importantes de este módulo son las siguientes:
***************************************************************************************
SciPy es una biblioteca de código abierto en Python que se utiliza para realizar operaciones científicas y técnicas. Está construida sobre NumPy y proporciona funcionalidades adicionales para la manipulación de datos y el análisis estadístico. El módulo SciPy se divide en varios submódulos, cada uno de los cuales se centra en un área específica de la computación científica. Algunos de los submódulos más importantes son:

scipy.cluster: Algoritmos para clustering (agrupamiento) de datos.

scipy.constants: Constantes físicas y matemáticas.

scipy.fftpack: Transformada rápida de Fourier.

scipy.integrate: Rutinas de integración numérica.

scipy.interpolate: Interpolación de datos y construcción de splines.

scipy.io: Herramientas para la entrada y salida de datos.

scipy.linalg: Álgebra lineal.

scipy.ndimage: Procesamiento de imágenes n-dimensionales.

scipy.odr: Regresión ortogonal.

scipy.optimize: Optimización de funciones.

scipy.signal: Procesamiento de señales.
-------------------------------------------------------------

scipy.sparse: Estructuras de datos y algoritmos para matrices dispersas.

scipy.spatial: Estructuras y algoritmos espaciales.

scipy.special: Funciones matemáticas especiales.

scipy.stats: Estadísticas y distribuciones de probabilidad.


En nuestro caso que nos aplica, nos fijaremos en El módulo scipy.signal, que proporciona una función llamada convolve que se utiliza para realizar convoluciones entre dos secuencias. La convolución es una operación matemática que combina dos conjuntos de datos para producir un tercer conjunto de datos. En el contexto de procesamiento de señales, la convolución se utiliza, por ejemplo, para suavizar señales, encontrar la respuesta de un sistema a una entrada, o para aplicar filtros.

En la actualidad SciPy sigue siendo una biblioteca muy utilizada en la comunidad científica y de ingeniería en Python. Proporciona herramientas esenciales para tareas relacionadas con la computación científica, como álgebra lineal, optimización, procesamiento de señales, interpolación, integración numérica, estadísticas y más.

La biblioteca SciPy se mantiene y actualiza regularmente para incluir nuevas funcionalidades, mejoras de rendimiento y correcciones de errores. Es una parte integral del ecosistema científico de Python junto con NumPy, Matplotlib y otras bibliotecas relacionadas.


Figure_1
Figure_2
Imágen de perfil

Capa convolucional.


Python

Publicado el 12 de Diciembre del 2023 por Hilario (144 códigos)
378 visualizaciones desde el 12 de Diciembre del 2023
#Aula_28_Convolucion.py
#Ejecutar:
python3 Aula_28_Convolucion.py


Propongo un sencillo ejercicio, sobre el funcionamiento de una capa convolucional (CNN).
Partimos de una imagen, y realizamos una simple convolucion, para apreciar su funcionamiento.
Para hacer más intuitivo el programa le mandamos imprimir los valores de los pixel de la imagen original, con los indices correspondientes.

A continuación describimos esquemáticamente que es una convolución.

La convolución es una operación matemática que combina dos conjuntos de datos para producir un tercer conjunto


Básicamente la convolución en una red neuronal convolucional (CNN) es una operación matemática que se utiliza para procesar imágenes y extraer características importantes. Es esencialmente una forma de explorar la imagen para buscar patrones locales. Aquí hay una explicación simple:

Imagen de Entrada, (en nuestro caso 1.jpeg):

La imagen de entrada es una matriz bidimensional de píxeles, donde cada píxel tiene un valor que representa la intensidad del color en ese punto.
Filtro o Kernel:

La convolución utiliza un filtro (también llamado kernel), que es una pequeña matriz de números.
Este filtro se desliza a lo largo de la imagen original, multiplicando sus valores con los valores correspondientes de la región de la imagen donde se encuentra.
Operación de Convolución:

Para cada posición del filtro, los valores se multiplican y suman para producir un solo valor en la nueva imagen, llamada mapa de características.
Este proceso se repite para cada posición del filtro, generando así todo el mapa de características.

Mapa de Características:

El resultado de la convolución es un mapa de características, que resalta patrones específicos aprendidos por el filtro.
Los primeros filtros en una red suelen capturar detalles simples como bordes, y a medida que avanzas en las capas, los filtros tienden a aprender patrones más complejos y abstractos.

Capas Convolucionales:

Las CNN suelen tener múltiples capas convolucionales apiladas, donde cada capa utiliza varios filtros para aprender diferentes características de la imagen.
La salida de una capa convolucional se utiliza como entrada para la siguiente, permitiendo que la red aprenda representaciones jerárquicas de las características.
En resumen, la convolución en una red convolucional es un proceso clave para detectar y resaltar patrones en una imagen. Es una técnica poderosa para el procesamiento de imágenes y ha demostrado ser muy exitosa en tareas como reconocimiento de objetos, clasificación de imágenes y segmentación de imágenes.






1
Figure_1
Imágen de perfil

Binarizar imagen


Python

Publicado el 7 de Diciembre del 2023 por Hilario (144 códigos)
467 visualizaciones desde el 7 de Diciembre del 2023
En Python, el módulo pickle proporciona una forma de serializar y deserializar objetos. La serialización es el proceso de convertir un objeto en una secuencia de bytes, mientras que la deserialización es la reconstrucción del objeto a partir de esa secuencia de bytes. El propósito principal de pickle es facilitar el almacenamiento y recuperación de objetos complejos, como estructuras de datos, clases y otros objetos de Python.

El uso típico de pickle es para guardar objetos Python en archivos y luego recuperarlos más tarde. Sin embargo, debes tener precaución al usar pickle con datos no confiables o no seguros, ya que la deserialización de datos no confiables puede ser un riesgo de seguridad. No debes cargar archivos pickle de fuentes no confiables o desconocidas.

Alternativamente, si estás trabajando solo con datos simples y no necesitas interoperabilidad con otros lenguajes, podrías considerar otros formatos de serialización más seguros y eficientes, como JSON, que son humanamente legibles y no ejecutan código durante la deserialización.
Imágen de perfil

ButtonOn-Off


Visual Basic

Publicado el 5 de Diciembre del 2023 por Leonardo
874 visualizaciones desde el 5 de Diciembre del 2023
Les traigo un OCX simple, que les servirá para representar el típico estado On-Off.

Button-OnOff-OCX

Reacciona al hacer un Click sobre el elemento, llamando al Evento Change. Desde ahí capturan el valor (TRUE ó FALSE) y realizar la acción que quieran de acuerdo a éso.

Les adjunto el código fuente, junto al OCX compilado. Espero les sea de utilidad.
Imágen de perfil

Programa para aplicación de filtros, en archivos de vídeo.


Python

estrellaestrellaestrellaestrellaestrella(4)
Actualizado el 20 de Noviembre del 2023 por Antonio (77 códigos) (Publicado el 24 de Mayo del 2021)
13.022 visualizaciones desde el 24 de Mayo del 2021
El presente programa se encarga de aplicar filtros sobre los fotogramas de un archivo de video empleando diferentes funciones. El programa realiza el filtrado frame a frame para a continuación generar un nuevo video con la secuencia de frames procesados (aplicando el frame rate del vídeo original). También usa el software "ffmpeg" para copiar el audio del vídeo original y añadirlo al vídeo resultante.

USO: Primeramente seleccionaremos el vídeo a filtrar mediante el botón "SEARCH". Una vez seleccionado iniciaremos el proceso con "START FILTERING" con el que empezaremos seleccionando la ubicación del nuevo vídeo, para a continuación iniciar el proceso (NOTA: La ruta del directorio de destino no deberá contener espacios en blanco). El proceso de filtrado podrá ser cancelado medinate el botón "CANCEL".
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.

vf
Imágen de perfil

Juego de la Serpiente, en ASCII (versión nueva)


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 15 de Noviembre del 2023 por Antonio (77 códigos) (Publicado el 4 de Noviembre del 2020)
6.271 visualizaciones desde el 4 de Noviembre del 2020
Nueva versión del juego de la serpiente con caracteres ASCII. Esta versión se diferencia de las dos anteriores (que pueden verse en mi lista de códigos) en que se acompaña de un archivo (de nombre "hiScore") que irá almacenando de modo permanente, la puntuación máxima alcanzada por el jugador.

BOTONES:
Mover serpiente: Botones de dirección
Pause y reanudar partida pausada : Barra espaciadora.
Finalizar partida en curso: tecla "q"
PARA CUALQUIER PROBLEMA, NO DUDEN EN COMUNICÁRMELO.

5ede3abe2db24-sg4
5ee33cfe068e9-sgm
sms