Mostrar los tags: re

Mostrando del 11 al 20 de 863 coincidencias
Se ha buscado por el tag: re
sin imagen de perfil

Impresiones Xml


C sharp

Publicado el 27 de Mayo del 2024 por Elías Gabriel (3 códigos)
402 visualizaciones desde el 27 de Mayo del 2024
Definí un lenguaje Xml para generar salidas por la impresora, así como también un programa que lea los archivos Xml e imprima los mismos. Quizá pueda resultar útil para alguien que desee hacer salidas por impresora sin escribir código C#, sino escribiendo un archivo Xml y utilizando una librería que se incluye en el código (PrintFramework.dll). El programa tan sólo es una utilización de esa librería para poder apreciar cómo funciona la misma. Dentro del archivo comprimido está el código escrito en SharpDevelop y también un archivo de texto con las instrucciones para escribir los archivos xml para ser parseados por la librería, así como una reseña acerca del uso de la misma.
Imágen de perfil

CALCULADORA DE DIVISAS


Python

estrellaestrellaestrellaestrellaestrella(1)
Actualizado el 25 de Mayo del 2024 por Antonio (77 códigos) (Publicado el 3 de Mayo del 2024)
726 visualizaciones desde el 3 de Mayo del 2024
Programa para convertir cantidades de moneda a otras divisas (el programa muestra la tasa de cambio y el equivalente en la otra moneda) usando datos actualizados.

cuc
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
Imágen de perfil

Aplicación de la función ReLU a cada píxel.


Python

Publicado el 29 de Abril del 2024 por Hilario (144 códigos)
288 visualizaciones desde el 29 de Abril del 2024
Figure_1
original
******************************************************
********************************************************

Aula_28_Aplicar_Relu.py
*****************************
Este ejercicio que proponemos es sumamente sencillo. No por ello es importante dentro del desarrollo de redes neuronales.
Lo hacemos con el fin de aplicar una funcion Relu auna imagen, en un proceso usual dentro de las redes neuronales.

Indiquemos brevemente lo que es una funcion RELU.
---------------------------------------------------------------------
La función ReLU (Rectified Linear Unit) es una función de activación comúnmente utilizada en redes neuronales
y otras técnicas de aprendizaje automático. Se define matemáticamente de la siguiente manera:

f(x)={ 0,x
si x≤0
si x>0
​O en otras palabras, de forma más sencilla,
la función ReLU devuelve 0 para todos los valores de entrada que son negativos o iguales a cero,
y devuelve el mismo valor de entrada para valores positivos.

En el contexto de redes neuronales, la función ReLU se utiliza típicamente como función de activación
en las capas ocultas debido a su simplicidad y eficiencia computacional. Permite la introducción
de no linealidades en el modelo, lo que ayuda a que la red neuronal pueda aprender
representaciones más complejas de los datos de entrada.
*************************************************************************************************
En este ejercicio pretendemos aplicar esta función a una imagen dimensionada previamente.

Pasamos a explicar el mismo con poco de detalle.
1-Importa las bibliotecas necesarias:
numpy para el procesamiento numérico y matplotlib.pyplot para visualizar la imagen.

import numpy as np
import matplotlib.pyplot as plt

-------------------------------------------------------------------------
2-Definimos una función llamada apply_relu que toma
una imagen como entrada y aplica la función ReLU a cada píxel de la imagen.

def apply_relu(imagen):
alto, ancho, canales = imagen.shape
imagen_relu = np.zeros_like(imagen)
for i in range(alto):
for j in range(ancho):
for k in range(canales):
imagen_relu[i, j, k] = max(0, imagen[i, j, k])
return imagen_relu

-----------------------------------------------------------------------------------------
3- Carga la imagen desde un archivo. En este caso, la ruta del archivo es
/home/margarito/python/imagen.jpg.
En vuestro caso deberéis modificar esta ruta con la situación del archivo imagen.
imagen = plt.imread('/home/margarito/python/imagen.jpg')
-----------------------------------------------------------------------------------------

4-Obtiene las dimensiones de la imagen (alto y ancho) utilizando la función shape.

alto, ancho, _ = imagen.shape
----------------------------------------------------------------------------------
5-Muestra la imagen original utilizando plt.imshow.

plt.imshow(imagen)
plt.title('Imagen Original')
plt.axis('off')
plt.show()

-----------------------------------------------------------------------------------
6-Aplica la función ReLU a la imagen cargada utilizando la función apply_relu definida anteriormente

imagen_relu = apply_relu(imagen)
---------------------------------------------------------------------------------------
7-Muestra la imagen después de aplicar la función ReLU utilizando plt.imshow.
plt.imshow(imagen_relu)
plt.title('Imagen aplicando la función ReLU')
plt.axis('off')
plt.show()

*************************************************************************************

Como se puede comprobar apenas existe una modificación visible, entre las dos
imagenes, antes y después de aplicar la función Relu.
Esto puede ser debido a que los valores negativos son escasos en el array 2D de la imagen.
********************************************************************************************************
---------------------------------------------------------------------------------------------------
Este ejercicio fue ejecutado en una plataforma Linux, Ubuntu 20.04.6 LTS.
Editado con Sublime Text.

Para que su funcionamiento y ejecucion sea correcto
se deberá de tener instalado en vuestro sistema
la versión numpy-1.24.4.
Es conveniente hacer este comando en consola, para actualizarlo:

pip install --upgrade numpy
************************************************************************
Ejecución del ejercicio en linea bajo consola:
python3 Aula_28_Aplicar_Relu.py
-----------------------------------------------------------------------
Imágen de perfil

Visor de gráficos financieros.


Python

estrellaestrellaestrellaestrellaestrella(2)
Actualizado el 1 de Abril del 2024 por Antonio (77 códigos) (Publicado el 7 de Julio del 2021)
10.235 visualizaciones desde el 7 de Julio del 2021
El programa muestra información relativa al precio máximo, mínimo, de apertura y cierre de un activo financiero (estos se irán almacenando en el archivo "symbols" que se generará al ejecutar el programa por primera vez) y para un periodo de tiempo. También muestra los gráficos relativos a las medias móviles exponenciales de 50 y 200 sesiones.
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
gf
Imágen de perfil

Red neuronal CNN, detección de clases.


Python

Publicado el 24 de Marzo del 2024 por Hilario (144 códigos)
610 visualizaciones desde el 24 de Marzo del 2024
CLASES DE IMAGENES CON UNA MUESTRA DE CADA UNA.
-----------------------------------------------------------------------------------
Figure_1
Figure_2
Figure_3
Figure_4
Figure_5

***************************************************************
IMAGEN PROPUESTA A EVALUAR.
------------------------------------------------------------------------------

imagen

****************************************************************************************************************
TUTORIAL DEL EJERCICIO.
--------------------------------------
Este ejercicio que propongo hoy, está realizado con el fin de entender la dinámica, o forma de realizar una red neuronal CNN.

Está compuesto por tres códigos:

1- Aula_28_Descarga_Imagenes.py
-------------------------------
En este primer código accedemos a:
dataset_url = https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"

De donde descargamos las imagenes necesarias para realizar el posterior modelo.
Las imagenes se guardaran, en nuestro usuario de Linux -Ubuntu-, en un fichero oculto (.Keras),
en un directorio llamado Datasets, en mi caso con la siguiente ruta: /home/margarito/.keras/datasets/flower_photos.
En el directorio:flower_photos, encontraremos las imagenes de las flores, con las clases a que corresponden.

Tres directorios con imágenes de estas clases:

-flower_photos
--daisy
--dandelion
--roses
--sunflowers
--tulips

Con el fin de utilizar estas imagenes de forma indirecta, copiaremos el directorio:-flower_photos
y lo pegaremos en nuestro directorio de usuario.
Al ejecutar este código, se muestra una imagen de cada clase.
---------------------------------------------------
Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:

import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
import pathlib


*************************************************************************************************************
2-Aula_28_Entreno_Modelo.py
--------------------------
Con este código, lo que hacemos es entrenar el modelo, salvandolo una vez entrenado en nuestro usuario, en el directorio donde tengamos nuestros códigos.

Básicamente este código hace lo siguiente:

Este código en Python utiliza TensorFlow y Keras para construir y entrenar una red
neuronal convolucional (CNN) para clasificar imágenes de flores. Aquí está el desglose de lo que hace cada parte del código:

Importación de bibliotecas:
Importa TensorFlow y algunas clases específicas
de Keras necesarias para el procesamiento de imágenes.

Definición de directorios y ruta del modelo:
Establece las rutas de los directorios donde se encuentran
los datos de entrenamiento de imágenes de flores y donde se guardará el modelo entrenado.

Parámetros de entrenamiento:
Define los parámetros para el entrenamiento,
como el tamaño del lote, la altura y el ancho de las imágenes, y el número de épocas.

Generador de datos de entrenamiento:
Crea un generador de datos de imágenes de entrenamiento
utilizando la clase ImageDataGenerator de Keras.
Esta clase realiza aumento de datos, como escalamiento, recorte, volteo horizontal, etc.

Configuración de generadores de flujo de datos de entrenamiento
y validación:
Configura los generadores de flujo de datos
de entrenamiento y validación utilizando el directorio de datos
de entrenamiento y especificando la división para la validación.

Creación del modelo CNN:
Define el modelo de la CNN utilizando
Sequential de Keras, que es una pila lineal de capas.
El modelo consta de varias capas convolucionales y de agrupación (pooling),
seguidas de capas totalmente conectadas. La última capa utiliza una función
de activación softmax para la clasificación de las clases de flores.

Compilación del modelo:
Compila el modelo especificando el optimizador,
la función de pérdida y las métricas para el entrenamiento.

Entrenamiento del modelo:
Entrena el modelo utilizando los generadores de flujo de datos de entrenamiento y validación.

Guardado del modelo:
Guarda el modelo entrenado en la ruta especificada.

Mensaje de finalización:
Imprime un mensaje para indicar que el modelo ha sido entrenado y guardado correctamente.

Como podéis apreciar, en mi caso de linux, las rutas donde tengo los datos,
y el lugar donde gusrado el modelo, es el siguiente:
# Rutas de los directorios de datos
train_dir = '/home/margarito/python/flower_photos'
model_path = '/home/margarito/python/Mi_Modelo_Hilario.h5'
******************************************************************************************************************

Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
-------------------------------------------------------------------------------------
3-Aula_28_Probar_Modelo.py
-------------------------
Con este código voy a probar el modelo.
En mi caso he sacado una fotografia, a una flor silvestre de diente de leon,
con el fin de evaluar el acierto de mi programa.
Este programa podría resumirse de la siguiente forma:

Este código realiza la inferencia de una imagen de flor utilizando un modelo de red neuronal convolucional (CNN) previamente entrenado. Aquí está el desglose de lo que hace cada parte del código:

Importación de bibliotecas:
Importa las bibliotecas necesarias, incluyendo NumPy para manipulación de matrices
y TensorFlow para el uso del modelo y la preprocesamiento de imágenes.

Cargar el modelo previamente entrenado:
Carga el modelo de CNN previamente entrenado desde la ruta especificada en modelo_ruta.

Ruta de la imagen de la flor:
Define la ruta de la imagen de la flor que se desea clasificar.

Cargar y redimensionar la imagen:
Carga la imagen de la flor desde la ruta especificada
y la redimensiona al tamaño requerido por el modelo, que es 224x224 píxeles.

Convertir la imagen a un array numpy:
Convierte la imagen cargada en un array numpy para que pueda ser procesada por el modelo.

Preprocesamiento de la imagen:
Realiza cualquier preprocesamiento necesario en la imagen, en este caso,
expandiendo las dimensiones del array para que coincida con el formato de entrada esperado por el modelo.

Normalización de los valores de píxeles:
Normaliza los valores de píxeles de la imagen para que estén en el rango de 0 a 1,
lo que es comúnmente necesario para la entrada de los modelos de redes neuronales.

Hacer la predicción:
Utiliza el modelo cargado para realizar la predicción en la imagen preprocesada.

Obtener la clase predicha:
Identifica la clase predicha asignando etiquetas de clases a las salidas del modelo
y seleccionando la clase con el valor de probabilidad más alto.

Imprimir la clase predicha:
Imprime la clase predicha de la flor en la imagen.

En resumen, este código toma una imagen de una flor,
la procesa adecuadamente para que pueda ser ingresada
al modelo, la clasifica utilizando el modelo
previamente entrenado y luego imprime la
clase predicha de la flor en la imagen.
------------------------------------------------------
Librerías necesarias a cargadas en vuestro sistema para la ejecución de este código:

import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image

*********************************************************************************
Estos ejercicios han sido realizados y ejecutados bajo consola linux.
Concretamente bajo Ubuntu 20.04.6 LTS.
Fueron editados con Sublime text.

Debereis de tener en cuenta que para la ejecución de los ejercicios
deberéis tener instaladas las librerías y módulos necesarios, segfún se indica en cada código.
----------------------------------------------

SALIDA, EN MI CASO DEL EJERCICIO DE LA IMAGEN PROPUESTA DE EVALUACIÓN:

2024-03-24 12:47:54.765845: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-24 12:47:54.797982: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-03-24 12:47:54.798348: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-03-24 12:47:55.329900: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT

1/1 [==============================] - ETA: 0s
1/1 [==============================] - 0s 114ms/step
La flor en la imagen es: dandelion
[Finished in 2.9s]
Imágen de perfil

Crear Módulo Transferencia Aprendizaje.


Python

Publicado el 16 de Enero del 2024 por Hilario (144 códigos)
384 visualizaciones desde el 16 de Enero del 2024
python3 Repaso_Aula_28.py
*************************


Ejercicio sencillo para Aula-28.
*******************************
Queremos generar un módulo para posteriores entrenamientos utilizando transferencia de aprendizaje.

A nuestro módulo lo llamaremos:MODULO-HIM.h5
Lo guardaré en esta ruta de mi ordenador: save_path = "/home/margarito/python/MODULO-HIM.h5"

Suponemos que en nuestro ordenador tenemos las imagenes de entrenamiento, que deberán guardar básicamente según este este esquema. En el caso de mi ordenador sería el siguiente:

/home/margarito/python/HIM/
|-- train/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...
|
|-- test/
| |-- dog/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- flores/
| | |-- imagen1.jpg
| | |-- imagen2.jpg
| | |-- ...
| |
| |-- ...


Epoch.
*******
Epoch 1/10
2/2 [==============================] - 3s 615ms/step - loss: 0.6765 - accuracy: 0.5472
Epoch 2/10
2/2 [==============================] - 2s 875ms/step - loss: 0.6293 - accuracy: 0.5660
Epoch 3/10
2/2 [==============================] - 2s 566ms/step - loss: 0.5859 - accuracy: 0.6415
Epoch 4/10
2/2 [==============================] - 2s 880ms/step - loss: 0.5429 - accuracy: 0.8491
Epoch 5/10
2/2 [==============================] - 2s 571ms/step - loss: 0.5003 - accuracy: 0.8679
Epoch 6/10
2/2 [==============================] - 2s 564ms/step - loss: 0.4556 - accuracy: 0.8868
Epoch 7/10
2/2 [==============================] - 2s 889ms/step - loss: 0.4191 - accuracy: 0.8868
Epoch 8/10
2/2 [==============================] - 2s 864ms/step - loss: 0.3714 - accuracy: 0.8491
Epoch 9/10
2/2 [==============================] - 2s 884ms/step - loss: 0.3436 - accuracy: 0.9057
Epoch 10/10
2/2 [==============================] - 2s 869ms/step - loss: 0.3403 - accuracy: 0.9245



*************************************************************************************************************
El ejercicio es realizado en plataforma Linux.
Concretamente en:Ubuntu 20.04.6 LTS.
Fue editado con:Sublime text.
Ejecución bajo consola Linux:python3 Repaso_Aula_28.py

***************************************************************************************************************
Imágen de perfil

Crear Modelo red neuronal CNN.


Python

Publicado el 14 de Enero del 2024 por Hilario (144 códigos)
573 visualizaciones desde el 14 de Enero del 2024
Con este ejemplo sencillo, pretendo explicar como realizar un ejercicio llamado: Crear_Modelo_CN_Aula-28.py, para entrenar una red neuronal convolucional (CNN), siguiendo varios pasos. Aquí te proporcionaré un resumen general de los pasos que puedes seguir utilizando bibliotecas como TensorFlow y Keras en Python. Ten en cuenta que esto es solo una guía básica, y dependiendo de tus necesidades específicas, es posible que debas ajustar algunos parámetros y configuraciones, incluso incrementar la dificultad del ejercicio.


Paso 1: Preparar tus datos.
--------------------------
Organizar tus datos:

Divide tus datos en conjuntos de entrenamiento y prueba. El conjunto de entrenamiento se utiliza para entrenar el modelo, mientras que el conjunto de prueba se utiliza para evaluar su rendimiento.
Asegúrate de tener etiquetas asociadas a cada imagen para supervisar el entrenamiento.

Preprocesamiento de imágenes:
----------------------------
Normaliza las imágenes (escala los valores de píxeles entre 0 y 1).
Redimensiona las imágenes según los requisitos de entrada de tu red neuronal.

Paso 2: Crear la arquitectura de la CNN.
---------------------------------------
Importar bibliotecas:

Importa TensorFlow y Keras.
Definir el modelo:

Crea un modelo secuencial (Sequential) o funcional de Keras.
-----------------------------------------------------------
Agrega capas convolucionales, capas de agrupación (pooling), y capas totalmente conectadas según tu arquitectura.

Paso 3: Compilar el modelo.
--------------------------
Compilar el modelo:
Especifica la función de pérdida, el optimizador y las métricas que se utilizarán para evaluar el rendimiento del modelo.
Utiliza el método compile de Keras.

Paso 4: Entrenar el modelo.
--------------------------
Entrenar el modelo:
Utiliza el método fit de Keras.
Proporciona el conjunto de entrenamiento y valida con el conjunto de prueba.
Ajusta el número de épocas y el tamaño del lote según sea necesario.

Paso 5: Evaluar el modelo.
-------------------------
Evaluar el modelo:
Utiliza el conjunto de prueba para evaluar el rendimiento del modelo.
Puedes usar el método evaluate de Keras.

Paso 6: Guardar el modelo entrenado.
----------------------------------
Guardar el modelo:
Utiliza la función save de Keras para guardar el modelo entrenado en un archivo.

PRESENTACION DE LAS IMAGENES DE ENTRENAMIENTO.
********************************************

Básicamente estamos hablando de dos formas:

[indent]CASO_1
*****

Imaginate que tengo estas imagenes:
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

[/indent]
*************************************************************************************
Sí, en tu caso, no hay clases específicas y solo tienes un conjunto de imágenes numeradas, simplemente colocarlas en orden jerárquico dentro del directorio de entrenamiento (train) es suficiente. La estructura que te proporciono como ejemplo refleja esa simplicidad.
Esta podría ser una ruta normal de archivos, al que llamamos en el directorio principal: ProyectoCNN

[indent]ProyectoCNN/
└── dataset/
└── train/
├── imagen_1.jpg
├── imagen_2.jpg
├── imagen_3.jpg
├── imagen_4.jpg
├── imagen_5.jpg
├── imagen_6.jpg
├── imagen_7.jpg
├── imagen_8.jpg
├── ...
└── imagen_124.jpg
[/indent]
----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------

CASO_2.
*********

En nuestro ejemplo utilizaremos, este formato de almacenamiento (CASO_2.), para entrenar el modelo.

Bien, imaginate ahora que tenemos estos directorios de clase:

(En mi caso, con el fin de coger el concepto de su funcionamiento solo he aportado 3 imagenes para cada tipo. Por lo
que los resultados de la predicción son bastante pobre, para aumentar la eficacia debería hacerse con miles de imagenes. Ten en cuenta que habitualmente para train, los modelos ya entrenados que descargamos pueden rondar las 60.000 imagenes.)

[[indent]b]camiones:
--------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

turismos:
--------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

autocares:
----------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg

motocicletas:
------------
imagen_1.jpg
imagen_2.jpg
imagen_3.jpg
imagen_4.jpg
imagen_5.jpg
imagen_6.jpg
imagen_7.jpg
imagen_8.jpg
.....
imagen_121.jpg
imagen_122.jpg
imagen_123.jpg
imagen_124.jpg[/b]
[/indent]
Como organizarias las imagenes para entrenar un modelo CNN.
----------------------------------------------------------
En principio, nosotros las organizariamos como sigue. Sin duda
puede haber más opciones que puedes experimentar,siempre que des la ruta adecuada
de acceso a tu modelo:ProyectoCNN.
ProyectoCNN/
└── dataset/
├── train/
│ ├── camiones/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ ├── turismos/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ ├── autocares/
│ │ ├── imagen_1.jpg
│ │ ├── imagen_2.jpg
│ │ ├── ...
│ │ └── imagen_124.jpg
│ └── motocicletas/
│ ├── imagen_1.jpg
│ ├── imagen_2.jpg
│ ├── ...
│ └── imagen_124.jpg
├── validation/
│ (mismo formato que 'train')
└── test/
(mismo formato que 'train')


En este ejemplo, he organizado las imágenes en tres conjuntos: entrenamiento (train), validación (validation), y prueba (test). Cada conjunto tiene subdirectorios para cada clase de vehículo (camiones, turismos, autocares, motocicletas). Esto es una práctica común al trabajar con modelos de aprendizaje profundo.

Espero que esto te ayude a estructurar tus datos para el entrenamiento de tu modelo CNN. Asegúrate de ajustar la división entre conjuntos de entrenamiento, validación y prueba según tus necesidades específicas.

**************************************************************************************************************
Los directorios "validation" y "test" son comúnmente utilizados en el entrenamiento de modelos de aprendizaje profundo, como las redes neuronales convolucionales (CNN), para evaluar el rendimiento del modelo en datos que no ha visto durante el entrenamiento. Aquí hay una breve descripción de cada uno:

Conjunto de Validación:
----------------------
Propósito: Se utiliza durante el entrenamiento del modelo para ajustar los hiperparámetros y evitar el sobreajuste (overfitting).

Composición:
---------------
Contiene datos adicionales que no se utilizan para entrenar directamente el modelo, pero se emplean para evaluar su rendimiento durante cada época (epoch) del entrenamiento.

Cómo se usa:
-----------
Después de cada época (epoch), de entrenamiento, el modelo se evalúa en el conjunto de validación. Esto permite ajustar los hiperparámetros del modelo para mejorar su rendimiento en datos que no forman parte del conjunto de entrenamiento.

Conjunto de Prueba (Test):
-------------------------

Propósito:
----------------
Se utiliza al final del entrenamiento para evaluar el rendimiento final del modelo en datos completamente nuevos que no se han visto en absoluto durante el proceso de entrenamiento.

Composición:
-----------
Contiene datos independientes que el modelo nunca ha visto ni durante el entrenamiento ni durante la validación.

Cómo se usa:
-----------
Una vez que el modelo ha sido entrenado y ajustado utilizando el conjunto de entrenamiento y de validación, se evalúa de manera final en el conjunto de prueba para obtener una estimación imparcial de su rendimiento en datos no vistos.
La separación entre conjuntos de entrenamiento, validación y prueba ayuda a garantizar que el modelo sea capaz de generalizar bien a datos no vistos y no se sobreajuste a los datos de entrenamiento específicos.

En resumen, el conjunto de validación es utilizado para ajustar los hiperparámetros y evitar el sobreajuste durante el entrenamiento, mientras que el conjunto de prueba proporciona una evaluación final del rendimiento del modelo en datos completamente nuevos y no vistos.
********************************************************************************************************************

Debes asegurarte, para no generar errores, que las rutas, en tu caso, sean exactas.
El ejercicio para generar el módelo tendría este código, que también te pongo en el editor de códigos:
----------------------------------------------------------------------------------
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Rutas de los datos de entrenamiento, validación y prueba
train_data_dir = 'ProyectoCNN/dataset/train'
validation_data_dir = 'ProyectoCNN/dataset/validation'
test_data_dir = 'ProyectoCNN/dataset/test'

# Parámetros
batch_size = 32
img_height = 64
img_width = 64

# Crear generadores de datos para entrenamiento, validación y prueba
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical') # 'categorical' ya que hay más de dos clases

validation_generator = validation_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')

test_generator = test_datagen.flow_from_directory(
test_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')

# Construir el modelo CNN
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(4, activation='softmax')) # 'softmax' ya que hay más de dos clases

# Compilar el modelo
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])

# Entrenar el modelo
model.fit(train_generator, epochs=10, validation_data=validation_generator)

# Evaluar el modelo en el conjunto de prueba
test_loss, test_acc = model.evaluate(test_generator)
print(f'Precisión en el conjunto de prueba: {test_acc}')

# Guardar el modelo
model.save('modelo_cnn_proyecto.h5')

**********************************************************************************************************
**************************************************************************************************************
Bien. En mi caso. Una vez creado el modelo con esta ruta: /home/margarito/python/modelo_cnn_proyecto.h5.
Necesito entrenar una red neuronal CNN, con el modelo: modelo_cnn_proyecto.h5 Que dada la ruta de esta
imagen de un turismo en esta ruta:/home/margarito/python/coche.jpeg . Me diga si es un camion,
una motocicleta, un coche, o un autocar.ñ

-----------------------------------------------------------------------------------------------------------
Después de haber entrenado tu modelo, puedes usarlo para hacer predicciones sobre nuevas imágenes.
Aquí tienes un ejemplo de cómo cargar el modelo y realizar una predicción sobre la imagen de un turismo:

import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np

# Cargar el modelo previamente entrenado
modelo = tf.keras.models.load_model('/home/margarito/python/modelo_cnn_proyecto.h5')

# Cargar la imagen de un coche
img_path = '/home/margarito/python/coche.jpeg'
img = image.load_img(img_path, target_size=(64, 64))
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)

# Realizar la predicción
predictions = modelo.predict(img_array)

# Obtener las clases predichas
class_indices = {0: 'camiones', 1: 'turismos', 2: 'autocares', 3: 'motocicletas'}
predicted_class = class_indices[np.argmax(predictions)]

# Imprimir el resultado
print(f'Predicción: {predicted_class}')


------------------------------------------------------------------------------------------
Este script carga la imagen del coche, la preprocesa de manera adecuada para el modelo, realiza la predicción y luego imprime la clase predicha. Asegúrate de que la imagen esté en el formato adecuado y ajusta las rutas según sea necesario. Recuerda que el modelo fue entrenado con clases específicas ('camiones', 'turismos', 'autocares', 'motocicletas'), así que las clases predichas deben coincidir con estas categorías.

************************************************************************************
[b]El ejercicio fue realizado bajo plataforma Linux.
Concretamente:Ubuntu 20.04.6 LTS
Editado con:Sublime Text.
-------------------------
Se debe de tener en cuenta que en tu ordenador deberan estar cargadas las librerias necesarias.
En nuestro caso:
---------------
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.image import ImageDataGenerator
-------------------------------------------
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg16 import preprocess_input, decode_predictions
import numpy as np
************************************************************************************
Ejecucion de los programas:

#Crear_Modelo_CN_Aula-28.py
#Ejecución:python3 Crear_Modelo_CN_Aula-28.py
--------------------------------------------------
#Util_Modelo_Creado_Aula-28.py
#Ejecutar: python3 Util_Modelo_Creado_Aula-28.py
*******************************************************************************************************
Imágen de perfil

Transferencia de Estilo, redes CNN.


Python

Publicado el 9 de Enero del 2024 por Hilario (144 códigos)
526 visualizaciones desde el 9 de Enero del 2024
descarga-1
descarga-2

---------------------------------------------------------------------------------------------------------------------

Exponemos aquí un ejemplo de redes neuronales convolucionales CNN,
basadas en transferencia de estilo. Partiendo de una imagen original, y otra imagen que dará
la forma del estilo(en nuestro caso, un cuadro de Picaso), construiremos otra, basada en las dos anteriores.

El programa que citamos aquí está basado en en un ejemplo
del blog RUBENJROMO
https://rubenjromo.com/
Modificados algunos parámetros.
Editado y ejecutado en GoogleColab.
Archivos de muestra, alojados en DRIVE.
https://drive.google.com/

Modelo vgg19-dcbb9e9d.pth bajado de:
"https://download.pytorch.org/models/vgg19-dcbb9e9d.pth

*****************************************************************************

Las redes neuronales convolucionales (CNN) y la transferencia de estilo son conceptos distintos en el campo del aprendizaje profundo, pero a veces se combinan para lograr resultados interesantes en el procesamiento de imágenes. Aquí hay una breve descripción de cada uno:

Redes Neuronales Convolucionales (CNN):

Las CNN son un tipo de arquitectura de red neuronal diseñada específicamente para procesar datos de rejilla, como imágenes. Utilizan capas de convolución para extraer características relevantes de la imagen de entrada.
La convolución implica el uso de filtros o kernels que se deslizan sobre la imagen para realizar operaciones locales, lo que permite detectar patrones específicos, como bordes, texturas o formas.
Están compuestas por capas convolucionales, capas de activación (como la ReLU), capas de agrupación (pooling) y capas completamente conectadas.
Transferencia de Estilo:

La transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido de una imagen con el estilo de otra imagen de manera creativa.
Se basa en la idea de separar el contenido y el estilo de una imagen. La información de contenido se extrae de una imagen de referencia, mientras que el estilo se toma de otra imagen.
La red neuronal intenta generar una nueva imagen que conserve el contenido de una imagen de entrada pero adopte el estilo de otra imagen de referencia.
Cuando se combinan estas dos ideas, se puede aplicar la transferencia de estilo utilizando una CNN. La idea es utilizar una red preentrenada, como VGG16 o VGG19, para extraer tanto el contenido como el estilo de las imágenes. Luego, se optimiza una nueva imagen para que coincida con el contenido de una imagen de entrada y el estilo de otra imagen de referencia. Este proceso permite crear imágenes que fusionan el contenido de una imagen con el estilo artístico de otra.

En resumen, las CNN son arquitecturas de redes neuronales diseñadas para el procesamiento de imágenes, mientras que la transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido y el estilo de diferentes imágenes. Al aplicar la transferencia de estilo con una CNN, se pueden lograr resultados visualmente atractivos y creativos.
Imágen de perfil

Clasificación_Datos_por_Regresión Logística


Python

Publicado el 30 de Octubre del 2023 por Hilario (144 códigos)
629 visualizaciones desde el 30 de Octubre del 2023
Presentamos para nuestra aula, un sencillo ejercicio propuesto, para clasificar una serie de datos sintéticos, utilizando el sistema de regresión logística.
El ejercicio, es el siguiente:
Ejercicio_Clas_Regre_Log-Aula-28.py

La clasificación de datos por regresión logística es una técnica de aprendizaje automático que se utiliza para predecir la pertenencia de un conjunto de datos a una o más clases. Aunque el nombre "regresión" logística incluye la palabra "regresión", este enfoque se utiliza para problemas de clasificación en lugar de regresión.

La regresión logística se emplea cuando se desea predecir la probabilidad de que una observación pertenezca a una categoría o clase específica, generalmente dentro de un conjunto discreto de clases. Por lo tanto, es una técnica de clasificación que se utiliza en problemas de clasificación binaria (dos clases) y clasificación multiclase (más de dos clases). Por ejemplo, se puede usar para predecir si un correo electrónico es spam (clase positiva) o no spam (clase negativa) o para clasificar imágenes en categorías como gatos, perros o pájaros.

La regresión logística utiliza una función logística (también conocida como sigmoide) para modelar la probabilidad de pertenecer a una clase particular en función de variables de entrada (características). La función sigmoide tiene la propiedad de que produce valores entre 0 y 1, lo que es adecuado para representar probabilidades. El modelo de regresión logística utiliza coeficientes (pesos) para ponderar las características y calcular la probabilidad de pertenencia a una clase.

Durante el entrenamiento, el modelo busca ajustar los coeficientes de manera que las probabilidades predichas se ajusten lo más cerca posible a las etiquetas reales de los datos de entrenamiento. Una vez que se ha entrenado el modelo, se puede utilizar para predecir la probabilidad de pertenencia a una clase para nuevos datos y tomar decisiones basadas en esas probabilidades, como establecer un umbral para la clasificación en una clase específica.
*************************************************************************************************************
Los pasos que realizamos en el ejercicio, son los siguientes:

1-Generamos datos sintéticos donde la clase se determina por la suma de las dos características.
2-Implementamos la regresión logística desde cero sin el uso de scikit-learn, incluyendo el cálculo de 3-gradientes y la actualización de pesos.
4-Dibujamos los datos de entrada en un gráfico, junto con la línea de decisión que separa las clases.


En resumen, la regresión logística es una técnica de clasificación que modela las probabilidades de pertenencia a clases utilizando la función sigmoide y es ampliamente utilizada en una variedad de aplicaciones de aprendizaje automático.