Códigos Fuente de Python

Mostrando del 61 al 70 de 783 registros
Imágen de perfil

Imagenes, ficheros tipo:.npy


Python

estrellaestrellaestrellaestrellaestrella(1)
Publicado el 12 de Enero del 2024 por Hilario (144 códigos)
478 visualizaciones desde el 12 de Enero del 2024
llama
Figure_1

********************************************************************************************************************


Aula-28-Trabajo_Imagenes.py
**********************************

Ejecución: python3 Aula-28-Trabajo_Imagenes.py



Utilizando los ficheros .npy, guardamos el array original de pixels en un fichero que llamamos: imagen.npy. Luego manipulamos la imagen a escala de grises en el fichero: imagen_gris.npy, que tambien guardamos, y abrimos para mostrar su modificación.

El sencillo ejercicio se puede manipular y modificar parámetros para observar resultados. Se tendrá en cuenta en sustituir la ruta de los archivos a tratar, que deben estar en el mismo directorio donde se encuentra: Aula-28-Trabajo_Imagenes.py

--------------------------------------------------------------------------------------------------------------------------------------

El ejercicio consiste en cargar una imagen en color, convertirla a escala de grises y guardar la imagen en escala de grises en un archivo.

El código del ejercicio se divide esquemáticamente en dos partes principales:

Parte 1: Cargar la imagen y convertirla a un array NumPy.
Parte 2: Convertir la imagen a escala de grises y guardarla en un archivo.
En la parte 1 del código, se utiliza la función Image.open() para cargar la imagen. A continuación, se utiliza la función resize() para cambiar el tamaño de la imagen a 180x180 píxeles. Por último, se utiliza la función img_to_array() para convertir la imagen a un array NumPy.

En la parte 2 del código, se utiliza la función rgb_to_grayscale() de TensorFlow para convertir la imagen a escala de grises. A continuación, se utiliza la función convert_image_dtype() para convertir la imagen a un tipo de datos NumPy de 8 bits. Por último, se utiliza la función save() para guardar la imagen en escala de grises en un archivo.

El código convierte la imagen original a escala de grises de forma correcta. La imagen en escala de grises conserva la información principal de la imagen original, pero pierde los detalles de color.
Imágen de perfil

Transferencia de Estilo, redes CNN.


Python

Publicado el 9 de Enero del 2024 por Hilario (144 códigos)
531 visualizaciones desde el 9 de Enero del 2024
descarga-1
descarga-2

---------------------------------------------------------------------------------------------------------------------

Exponemos aquí un ejemplo de redes neuronales convolucionales CNN,
basadas en transferencia de estilo. Partiendo de una imagen original, y otra imagen que dará
la forma del estilo(en nuestro caso, un cuadro de Picaso), construiremos otra, basada en las dos anteriores.

El programa que citamos aquí está basado en en un ejemplo
del blog RUBENJROMO
https://rubenjromo.com/
Modificados algunos parámetros.
Editado y ejecutado en GoogleColab.
Archivos de muestra, alojados en DRIVE.
https://drive.google.com/

Modelo vgg19-dcbb9e9d.pth bajado de:
"https://download.pytorch.org/models/vgg19-dcbb9e9d.pth

*****************************************************************************

Las redes neuronales convolucionales (CNN) y la transferencia de estilo son conceptos distintos en el campo del aprendizaje profundo, pero a veces se combinan para lograr resultados interesantes en el procesamiento de imágenes. Aquí hay una breve descripción de cada uno:

Redes Neuronales Convolucionales (CNN):

Las CNN son un tipo de arquitectura de red neuronal diseñada específicamente para procesar datos de rejilla, como imágenes. Utilizan capas de convolución para extraer características relevantes de la imagen de entrada.
La convolución implica el uso de filtros o kernels que se deslizan sobre la imagen para realizar operaciones locales, lo que permite detectar patrones específicos, como bordes, texturas o formas.
Están compuestas por capas convolucionales, capas de activación (como la ReLU), capas de agrupación (pooling) y capas completamente conectadas.
Transferencia de Estilo:

La transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido de una imagen con el estilo de otra imagen de manera creativa.
Se basa en la idea de separar el contenido y el estilo de una imagen. La información de contenido se extrae de una imagen de referencia, mientras que el estilo se toma de otra imagen.
La red neuronal intenta generar una nueva imagen que conserve el contenido de una imagen de entrada pero adopte el estilo de otra imagen de referencia.
Cuando se combinan estas dos ideas, se puede aplicar la transferencia de estilo utilizando una CNN. La idea es utilizar una red preentrenada, como VGG16 o VGG19, para extraer tanto el contenido como el estilo de las imágenes. Luego, se optimiza una nueva imagen para que coincida con el contenido de una imagen de entrada y el estilo de otra imagen de referencia. Este proceso permite crear imágenes que fusionan el contenido de una imagen con el estilo artístico de otra.

En resumen, las CNN son arquitecturas de redes neuronales diseñadas para el procesamiento de imágenes, mientras que la transferencia de estilo es una técnica que utiliza redes neuronales para combinar el contenido y el estilo de diferentes imágenes. Al aplicar la transferencia de estilo con una CNN, se pueden lograr resultados visualmente atractivos y creativos.
Imágen de perfil
Val: 712
Bronce
Ha aumentado 1 puesto en Python (en relación al último mes)
Gráfica de Python

Reproductor de música (nueva versión).


Python

Actualizado el 9 de Enero del 2024 por Antonio (77 códigos) (Publicado el 31 de Mayo del 2021)
9.860 visualizaciones desde el 31 de Mayo del 2021
Programa para reproducir archivos de audio que incorpora la posibilidad de crear una lista de favoritos.
El programa necesita de un archivo "json" que se generará al ejecutarse por primera vez.
Esta versión incorpora la posibilidad de reproducir secuencialmente la lista de favoritos, para ello se usará el botón "PLAY ALL" (dicha reproducción se podrá finalizar igualmente con el botón "STOP").
PARA CUALQUIER DUDA U OBSERVACIÓN USEN LA SECCIÓN DE COMENTARIOS.
mpr
Imágen de perfil

Transfer Learning.


Python

Publicado el 28 de Diciembre del 2023 por Hilario (144 códigos)
529 visualizaciones desde el 28 de Diciembre del 2023
seis
numeropredicho
**********************************************************************************************************

Propongo este sencillo ejercicio llamado:AULA-288_Transf_Apren_CNN.py, si utilizamos nuestro propio editor, Sublime text, y ejecutamos directamente en nuestra consola linux. O también llamado:AULA-288_Transf_Apren_CNN.ipynb, si utlizamos para editar y ejecutar a Google Colab.

En ambos casos, utilizamos indirectamente el método denominado "Transferencia de aprendizaje", con el fin de apreciar cual es el proceso de este sistema de red Convolucional(CNN).

Se trata, utilizando Machine Learning de la mano de TensorFlow y Keras, dos librerías Open Source que nos permiten adentrarnos en el Deep Learning de forma sencilla. De entre las muchas bibliotecas disponibles una de las más importantes es indiscutiblemente es TensorFlow, que se ha impuesto como la librería más popular en Deep Learning. Actualmente, sería difícil imaginar abordar un proyecto de aprendizaje sin ella.

Básicamente, para entenderlo, es una biblioteca de código abierto para realizar operaciones matemáticas de manera eficiente, especialmente diseñada para trabajar con redes neuronales y aprendizaje profundo (deep learning).


Keras, por otro lado, es una interfaz de alto nivel para construir y entrenar modelos de aprendizaje profundo. Facilita la construcción y experimentación con redes neuronales de una manera más simple y amigable.

TensorFlow.keras:
TensorFlow.keras es una implementación de la interfaz de Keras que está integrada directamente en TensorFlow. Esto significa que puedes usar las funciones y herramientas de TensorFlow mientras trabajas con la sencillez y flexibilidad de Keras.

En resumen, TensorFlow.keras es una combinación que aprovecha la potencia de TensorFlow para realizar cálculos eficientes en el fondo, mientras que proporciona una interfaz amigable y fácil de usar para diseñar y entrenar modelos de aprendizaje profundo mediante la simplicidad de Keras. Esto facilita el desarrollo de aplicaciones de inteligencia artificial y aprendizaje profundo de una manera más accesible para los desarrolladores.

En este ejercicio, primero entrenamos el modelo, creando el mismo, alojandolo en el fichero: mnist_model.h5. En un caso, dependiendo el método de ejecución será guardado en Drive, o en nuestro propio ordenador. Luego cargaremos la imagen del número propuesto, que hemos fotografiado con el móvil, una vez dibujado a mano en color negro, sobre fondo blanco.

AQUÍ RESUMIMOS LOS PASOS NECESARIOS.
----------------------------------
Dibujar el número:
Preparar el papel o la superficie: Asegúrate de tener un fondo claro y limpio para que el número se destaque.

Dibuja el número: Utiliza un lápiz o bolígrafo para dibujar claramente el número en el papel. Trata de mantener el trazo claro y definido.

Contraste: Asegúrate de que haya suficiente contraste entre el número y el fondo para que el modelo pueda distinguirlo fácilmente.

Fotografiar el número:
Buena iluminación: Coloca la hoja con el número en un lugar bien iluminado. La iluminación uniforme puede ayudar a obtener una imagen de mejor calidad.

Ángulo y enfoque: Fotografía el número desde arriba para evitar distorsiones. Asegúrate de que la imagen esté enfocada y que el número sea claramente visible.

Fondo simple: Trata de tener un fondo simple y sin distracciones para que el modelo se centre en el número.

Preprocesamiento de la imagen:
Recortar y redimensionar: Recorta la imagen para que solo contenga el número y redimensiona la imagen según sea necesario.

Convertir a escala de grises: Convierte la imagen a escala de grises si es un número en blanco y negro, o a escala de colores si es en color.

Utilizar el número en un modelo de CNN:
Preparar los datos: Dependiendo del modelo y la biblioteca que estés utilizando (por ejemplo, TensorFlow y Keras), es posible que necesites ajustar el formato de la imagen o realizar otras transformaciones.

Entrenar el modelo: Entrena tu modelo de CNN utilizando el conjunto de datos que has creado con las imágenes de los números.

Prueba el modelo: Utiliza nuevas imágenes para probar la capacidad de tu modelo para reconocer los números.

Recuerda que la calidad de las imágenes y la cantidad de datos de entrenamiento son factores críticos para el éxito de tu modelo de CNN. Cuanto más variados y representativos sean los datos de entrenamiento, mejor será la capacidad del modelo para generalizar y reconocer números en situaciones diversas.

COMO EJECUTAR EL EJERCICIO.
---------------------------
Como hemos comentado al inicio, podemos utilizar dos métodos.

1-GOOGLE COLAB.
--------------
En este caso tendremos una cuenta abierta en Google Colab, y en Drive, con el fin de ejecutar online el ejercicio. Montando debidamente Drive.
Deberemos especificar correctamente las rutas tando de la carga de la imagen del número a predecir, como la descarga y alojamiento del fichero.
2-BAJO CONSOLA LINUX.
-------------------
En mi caso el ejercicio se utiliza Ubuntu 20.04.6 LTS, y el editor Sublime Text.

En este caso, también deberemos especificar correctamente las rutas tando de la carga de la imagen del número a predecir, como la descarga y alojamiento del fichero.
*************************************************************

Con el fin de que no haya conflictos con CUDA, hemos colocado esta linea de código en ambos ejercicios:
Para utilizar la CPU de tu ordenador, aunque en el caso de Google Colab, utilizamos su sistema online.

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # Establece la variable de entorno para usar la CPU de tu ordenador, al no tener, en muchos casos una tarjeta NVIDEA.

---------------------------------------------------------
QUE ES CUDA:

CUDA es una plataforma de cómputo paralelo desarrollada por NVIDIA que permite utilizar la potencia de procesamiento de las unidades de procesamiento gráfico (GPU) para realizar cálculos de propósito general. La sigla CUDA proviene de "Compute Unified Device Architecture" (Arquitectura de Dispositivo Unificado para Cómputo, en español).

A continuación, te proporciono algunos puntos clave sobre CUDA:

Programación en paralelo: CUDA proporciona un entorno de programación en paralelo que permite a los desarrolladores aprovechar la capacidad de procesamiento masivo de las GPUs para realizar cálculos intensivos. Esto es especialmente útil para aplicaciones que pueden dividirse en tareas independientes que se pueden ejecutar simultáneamente.

Modelo de programación: CUDA utiliza un modelo de programación basado en el lenguaje de programación C, lo que facilita a los desarrolladores escribir código para ejecutar en las GPUs de NVIDIA.

Núcleos de procesamiento: Las GPUs de NVIDIA están compuestas por un gran número de núcleos de procesamiento, que pueden ejecutar tareas de forma paralela. CUDA permite a los desarrolladores escribir programas que distribuyen estas tareas en los núcleos de manera eficiente.

Aplicaciones comunes: CUDA se utiliza comúnmente en aplicaciones de alto rendimiento, como el procesamiento de imágenes y videos, simulaciones científicas, aprendizaje profundo (deep learning), criptografía y otros campos que requieren un procesamiento intensivo.

Bibliotecas y herramientas: NVIDIA proporciona bibliotecas y herramientas específicas de CUDA, como cuBLAS (para álgebra lineal básica), cuDNN (para redes neuronales profundas), y otras, que facilitan el desarrollo de aplicaciones de alto rendimiento.

Desarrollo de software: Para utilizar CUDA, los desarrolladores suelen escribir código en lenguaje CUDA C y utilizan herramientas proporcionadas por NVIDIA, como el compilador NVCC (NVIDIA CUDA Compiler).

En resumen, CUDA es una tecnología que permite aprovechar la potencia de las GPUs de NVIDIA para realizar cálculos paralelos, lo que resulta especialmente valioso en aplicaciones que requieren un alto rendimiento computacional.
Imágen de perfil

Calculadora


Python

Publicado el 23 de Diciembre del 2023 por Manuel (12 códigos)
460 visualizaciones desde el 23 de Diciembre del 2023
Calculadora que realiza las operaciones básicas y además permite cambiar entre los modos de binario, hexadecimal, decimal y octal.
Imágen de perfil

Convolución con SciPy


Python

Publicado el 18 de Diciembre del 2023 por Hilario (144 códigos)
794 visualizaciones desde el 18 de Diciembre del 2023
Proponemos el sencillo ejercicio: Aula_28_CNN-repaso.py, con el fin de realizar un proceso de convolución, sobre una imagen en color gris, por lo que sólo tendremos un canal de profundidad en la misma.

Según le hemos pedido al programa, la imagen tiene las siguientes características:
Características de la imagen:
Dimensiones: (431, 770, 1)
Valor mínimo: 0
Valor máximo: 249
Valor medio: 23.887129498498407.


La particularidad de este ejercicio, es que utilizamos el modulo scipy, creado inicialmente sobre el año 2000, actualizado en revisiones, y aún bastante utilizado.

Las caracteristicas más importantes de este módulo son las siguientes:
***************************************************************************************
SciPy es una biblioteca de código abierto en Python que se utiliza para realizar operaciones científicas y técnicas. Está construida sobre NumPy y proporciona funcionalidades adicionales para la manipulación de datos y el análisis estadístico. El módulo SciPy se divide en varios submódulos, cada uno de los cuales se centra en un área específica de la computación científica. Algunos de los submódulos más importantes son:

scipy.cluster: Algoritmos para clustering (agrupamiento) de datos.

scipy.constants: Constantes físicas y matemáticas.

scipy.fftpack: Transformada rápida de Fourier.

scipy.integrate: Rutinas de integración numérica.

scipy.interpolate: Interpolación de datos y construcción de splines.

scipy.io: Herramientas para la entrada y salida de datos.

scipy.linalg: Álgebra lineal.

scipy.ndimage: Procesamiento de imágenes n-dimensionales.

scipy.odr: Regresión ortogonal.

scipy.optimize: Optimización de funciones.

scipy.signal: Procesamiento de señales.
-------------------------------------------------------------

scipy.sparse: Estructuras de datos y algoritmos para matrices dispersas.

scipy.spatial: Estructuras y algoritmos espaciales.

scipy.special: Funciones matemáticas especiales.

scipy.stats: Estadísticas y distribuciones de probabilidad.


En nuestro caso que nos aplica, nos fijaremos en El módulo scipy.signal, que proporciona una función llamada convolve que se utiliza para realizar convoluciones entre dos secuencias. La convolución es una operación matemática que combina dos conjuntos de datos para producir un tercer conjunto de datos. En el contexto de procesamiento de señales, la convolución se utiliza, por ejemplo, para suavizar señales, encontrar la respuesta de un sistema a una entrada, o para aplicar filtros.

En la actualidad SciPy sigue siendo una biblioteca muy utilizada en la comunidad científica y de ingeniería en Python. Proporciona herramientas esenciales para tareas relacionadas con la computación científica, como álgebra lineal, optimización, procesamiento de señales, interpolación, integración numérica, estadísticas y más.

La biblioteca SciPy se mantiene y actualiza regularmente para incluir nuevas funcionalidades, mejoras de rendimiento y correcciones de errores. Es una parte integral del ecosistema científico de Python junto con NumPy, Matplotlib y otras bibliotecas relacionadas.


Figure_1
Figure_2
Imágen de perfil

Cálculo total de un pedido


Python

Publicado el 17 de Diciembre del 2023 por Manuel (12 códigos)
416 visualizaciones desde el 17 de Diciembre del 2023
Este es un programa en el que inicialmente pide que indiques el dinero que llevas. A continuación empieza el proceso de creación de la pizza. Finalmente indica si te llega o no el dinero, y, en caso de que te llegue, indica el total a devolver.
Imágen de perfil

Filtrado de imagenes.


Python

Publicado el 15 de Diciembre del 2023 por Hilario (144 códigos)
1.776 visualizaciones desde el 15 de Diciembre del 2023
Aula_38_Imagen_Filtrada.py.
+++++++++++++++++++++


En este diminuto ejemplo, hablaremos un poco de la filtración, o suavización de la imagen, antes de someterla a las diversas convoluciones.

La filtración de una imagen antes de aplicar convoluciones o técnicas más avanzadas tiene varias razones. Aquí hay algunas de las razones más comunes:

Reducción de Ruido:

Las imágenes a menudo contienen ruido, que son variaciones no deseadas o errores en los datos. La filtración previa puede ayudar a reducir el ruido y mejorar la calidad de la imagen antes de realizar operaciones más complejas.

Eliminación de Detalles Innecesarios:

En algunas aplicaciones, como la detección de bordes o características, es beneficioso eliminar detalles innecesarios antes de aplicar técnicas más avanzadas. Esto puede mejorar la eficiencia computacional y evitar que se capturen detalles no deseados.
Suavizado de la Imagen:

Filtrar una imagen con técnicas como el filtro Gaussiano puede suavizar la imagen, lo que puede ser útil para preservar características importantes mientras se atenúan detalles finos. Esto puede ser especialmente útil en tareas de procesamiento de imágenes donde se necesita resaltar características más prominentes.

Mejora del Contraste:

Algunos filtros pueden ayudar a mejorar el contraste en la imagen, resaltando las diferencias entre regiones de la imagen. Esto puede ser beneficioso antes de aplicar técnicas que dependan del contraste.
Preprocesamiento para Algoritmos de Aprendizaje Automático:

Cuando se utilizan imágenes como entrada para algoritmos de aprendizaje automático, a menudo se realiza un preprocesamiento para reducir la complejidad y garantizar que el modelo se enfoque en características relevantes.
Mejora de la Estabilidad Numérica:

En algunos casos, filtrar la imagen antes de ciertas operaciones puede mejorar la estabilidad numérica y evitar problemas como la amplificación de ruido numérico.
Es importante señalar que la necesidad de filtrar una imagen antes de la convolución puede depender de la tarea específica y del conjunto de datos. En algunas situaciones, la filtración puede ser crucial, mientras que en otras puede no ser necesaria. La elección del tipo de filtro y sus parámetros dependerá de la naturaleza de la imagen y los requisitos de la tarea que estás abordando.

TIPOS MÁS IMPORTANTES DE SUAVIZACIÓN DE IMAGENES.
--------------------------------------------------------------------------------------------
Existen varios tipos de filtros que se pueden utilizar para procesar imágenes y cada uno tiene aplicaciones específicas. Aquí hay algunos tipos comunes de filtrado de imágenes:

Filtro de Suavizado (Blur):

Promedio (Average): Reemplaza cada píxel por el promedio de los píxeles vecinos.
Gaussiano: Aplica un filtro Gaussiano para suavizar la imagen, reduciendo el ruido y los detalles finos.
Filtro de Realce (Sharpening):

Enfasis (Unsharp Masking): Crea una versión borrosa de la imagen original y la sustrae para resaltar bordes y detalles.
Máscaras de Realce: Utiliza máscaras diseñadas para realzar características específicas.
Filtro de Detección de Bordes:

Sobel, Prewitt, Roberts: Estos filtros se utilizan para detectar bordes en una imagen realzando las diferencias de intensidad.
Operador Laplaciano: Resalta los cambios de intensidad en una imagen.
Filtro de Mediana:

Reemplaza cada píxel por el valor de la mediana de los píxeles vecinos. Es eficaz para eliminar el ruido impulsivo (salt-and-pepper).
Filtro de Bilateral:

Conserva los bordes mientras suaviza la imagen. Es útil para suavizar la imagen sin perder detalles importantes.
Filtro de Adaptación Local de Contraste (CLAHE):

Mejora el contraste local en áreas de la imagen. Útil para resaltar detalles locales.
Filtro de Transformada Wavelet:

Utiliza la transformada wavelet para realizar suavizado o realce de la imagen en diferentes escalas y direcciones.
Filtro de Color:

Corrección de Color: Ajusta el equilibrio de color y mejora la apariencia visual de la imagen.
Espacio de Color YUV: Puede aplicarse para modificar la luminancia y los componentes de color independientemente.
Estos son solo algunos ejemplos, y la elección del filtro dependerá de la tarea específica y los requisitos de procesamiento de la imagen. Además, a menudo es beneficioso realizar ajustes y experimentar con diferentes filtros y parámetros para obtener los resultados deseados.

----------------------------------------------------------------------------------
En este ejemplo, propongo utilizar el sistema que definimos como la aplicación de un filtro Gaussiano.
La campana de Gauss, también conocida como función gaussiana o distribución normal, es una función matemática que describe una forma de campana simétrica. Con esto tratamos de suavizar el contorno o extemos de la imagen.







mar
Imágen de perfil

Capas de Agrupación (Pooling).


Python

Publicado el 14 de Diciembre del 2023 por Hilario (144 códigos)
417 visualizaciones desde el 14 de Diciembre del 2023
Aula_68_EP_IA.py
************************************************************************
Proponemos este nuevo ejercicio prosiguiendo con el aprendizaje sobre convoluciones y max pooling, en el tratamiento de una imagen en OpenCV.
Esquemáticamente este ejercicio implementas varios conceptos importantes:

*Carga de la imagen con cv2
*Conversión a escala de grises
*Definición de un kernel de convolución 3x3
*Aplicación de múltiples convoluciones en loops (8 iteraciones)
*Reducción del tamaño de la imagen con max pooling después de cada convolución
*Impresión de los valores de píxeles resultantes
*Visualización de la imagen original vs la imagen procesada
*Adicionalmente, la función que imprime los valores de pixeles con sus índices es muy útil para inspeccionar los cambios paso a paso después de cada iteración.

La salida debe mostrar efectivamente cómo se suaviza y resalta el contraste en la imagen resultado, después de aplicar las capas de convolución y pooling.

En resumen, el código trata de ser sencillo y didáctico, para mostrar el efecto que tiene aplicar una CNN sobre imágenes. En este caso con 8 convoluciones.

El ejercicio permite modificar parametros para observar nuevos valores y matices en la imagen.

El siguiente paso sería, en otro ejercicio, la aplanación de los valores obtenidos para pasar y entregarlos a una red neuronal con capas Completamente Conectadas (Densas):

Esto quiere decir que después de las capas de convolución y agrupación, la red puede incluir capas completamente conectadas. En estas capas, todas las neuronas están conectadas entre sí, para optener el resultado final que pretendemos en el modelo que vayamos a crear.

Eso tendrá cabida, como dije, en un próximo ejercicio.

*****************************************************************************
Figure_1
Imágen de perfil

Representación digital de imágenes.


Python

Publicado el 13 de Diciembre del 2023 por Hilario (144 códigos)
376 visualizaciones desde el 13 de Diciembre del 2023
Representación digital de imágenes.
----------------------------------

Con el fin de ir familiarizandonos con las redes convolucionales. Proponemos este otro ejercicio: Aula-38-Define-Imagen-CNN.py.

En este programa, definimos una imagen de entrada en color (3 canales).
Mediante np.array.
Por otro lado definimos el filtro, o kernel, de la convolución, por medio de otro array.

Realizamos la convolución usando la función convolve de SciPy.
Al final mostramos la imagen original y la imagen convolucionada.

Básicamente en este ejercicio muestra el contexto de la representación digital de imágenes, cada píxel tiene un valor numérico que indica su color. Estos valores suelen estar en forma de un array bidimensional, también conocido como matriz.

En una imagen en escala de grises, cada píxel puede tener un valor numérico que representa la intensidad de gris en esa posición. Los valores comúnmente van desde 0 (negro) hasta 255 (blanco) en una imagen de 8 bits.

En una imagen en color, se utilizan varios canales de color (como rojo, verde y azul en el modelo RGB). Cada canal tiene su propia matriz de píxeles y, cuando se combinan, forman el color de cada píxel. Los valores numéricos en este caso también suelen estar en el rango de 0 a 255.

Por ejemplo, si tienes una imagen de 100x100 píxeles en escala de grises, podrías representarla como una matriz de 100x100, donde cada elemento de la matriz contiene un valor numérico que representa la intensidad de gris en esa posición específica.
Figure_1
Figure_2