Código de Python - Descenso de gradiente tipo Adam.

Imágen de perfil

Descenso de gradiente tipo Adam.gráfica de visualizaciones


Python

Publicado el 19 de Octubre del 2023 por Hilario (144 códigos)
752 visualizaciones desde el 19 de Octubre del 2023
El descenso de gradiente tipo Adam, o simplemente Adam (por Adaptive Moment Estimation), es un algoritmo de optimización utilizado en el campo del aprendizaje automático y la inteligencia artificial para ajustar los parámetros de un modelo de manera que se minimice una función de pérdida. Adam es una variante del descenso de gradiente estocástico (SGD) que combina técnicas de otros algoritmos de optimización para mejorar la convergencia y la eficiencia en la búsqueda de los mejores parámetros del modelo.

Aquí hay una explicación simplificada de cómo funciona el algoritmo Adam:

Inicialización de parámetros: Se inician los parámetros del algoritmo, como la tasa de aprendizaje (learning rate), los momentos de primer y segundo orden, y se establece un contador de iteraciones.

Cálculo del gradiente: En cada iteración, se calcula el gradiente de la función de pérdida con respecto a los parámetros del modelo. Esto indica en qué dirección deben ajustarse los parámetros para reducir la pérdida.

Cálculo de momentos de primer y segundo orden: Adam mantiene dos momentos acumulativos, uno de primer orden (media móvil de los gradientes) y otro de segundo orden (media móvil de los gradientes al cuadrado).

Actualización de parámetros: Se utilizan los momentos calculados en el paso anterior para ajustar los parámetros del modelo. Esto incluye un término de corrección de sesgo para tener en cuenta el hecho de que los momentos se inicializan en cero. La tasa de aprendizaje también se aplica en esta etapa.

Iteración y repetición: Los pasos 2-4 se repiten durante un número especificado de iteraciones o hasta que se cumpla un criterio de parada, como la convergencia.

Adam se considera una elección popular para la optimización de modelos de aprendizaje profundo debido a su capacidad para adaptar la tasa de aprendizaje a medida que se entrena el modelo, lo que lo hace efectivo en una variedad de aplicaciones y evita problemas como la convergencia lenta o la divergencia en el entrenamiento de redes neuronales. Sin embargo, es importante ajustar adecuadamente los hiperparámetros de Adam, como la tasa de aprendizaje y los momentos, para obtener un rendimiento óptimo en un problema específico.

Requerimientos

Realizado bajo plataforma Linux.
Ubuntu 20.04.6 LTS
Editado con Sublime text.
---------------------------------------------------------------
Comando de ejecucion:

python3 Desc-Grad-ADAM-Aula-B.28-Gihub.py

También se podría editar y ejecutar con Google Colab.

V-0.

Publicado el 19 de Octubre del 2023gráfica de visualizaciones de la versión: V-0.
753 visualizaciones desde el 19 de Octubre del 2023
estrellaestrellaestrellaestrellaestrella
estrellaestrellaestrellaestrella
estrellaestrellaestrella
estrellaestrella
estrella

descarga

Contenido bloqueado por AdBlock

Esta página se mantiene gracias a la publicidad
Te agradecemos que desactives el bloqueador de publicidad y refresques la página.




Comentarios sobre la versión: V-0. (0)


No hay comentarios
 

Comentar la versión: V-0.

Nombre
Correo (no se visualiza en la web)
Valoración
Comentarios...
CerrarCerrar
CerrarCerrar
Cerrar

Tienes que ser un usuario registrado para poder insertar imágenes, archivos y/o videos.

Puedes registrarte o validarte desde aquí.

Codigo
Negrita
Subrayado
Tachado
Cursiva
Insertar enlace
Imagen externa
Emoticon
Tabular
Centrar
Titulo
Linea
Disminuir
Aumentar
Vista preliminar
sonreir
dientes
lengua
guiño
enfadado
confundido
llorar
avergonzado
sorprendido
triste
sol
estrella
jarra
camara
taza de cafe
email
beso
bombilla
amor
mal
bien
Es necesario revisar y aceptar las políticas de privacidad

http://lwp-l.com/s7449