Entender funcion de Matlab
Publicado por patricia (13 intervenciones) el 02/05/2011 20:12:05
Hola! tengo que entender esta funcion para poder pasarla a C++, alguien me podría ayudar a comprenderla??
Gracias, Un Saludo.
Patricia
function [L,S,T,maxes] = find_landmarks(D,SR,N)
% [L,S,T,maxes] = find_landmarks(D,SR,N)
% Make a set of spectral feature pair landmarks from some audio data
% D is an audio waveform at sampling rate SR
% L returns as a set of landmarks, as rows of a 4-column matrix
% {start-time-col start-freq-row end-freq-row delta-time}
% N is the target hashes-per-sec (approximately; default 5)
% S returns the filtered log-magnitude surface
% T returns the decaying threshold surface
% maxes returns a list of the actual time-frequency peaks extracted.
%
% REVISED VERSION FINDS PEAKS INCREMENTALLY IN TIME WITH DECAYING THRESHOLD
%
% 2008-12-13 Dan Ellis [email protected]
if nargin < 3; N = 7; end % 7 to get a_dec = 0.998
% The scheme relies on just a few landmarks being common to both
% query and reference items. The greater the density of landmarks,
% the more like this is to occur (meaning that shorter and noisier
% queries can be tolerated), but the greater the load on the
% database holding the hashes.
%
% The factors influencing the number of landmarks returned are:
% A. The number of local maxima found, which in turn depends on
% A.1 The spreading width applied to the masking skirt from each
% found peak (gaussian half-width in frequency bins). A
% larger value means fewer peaks found.
f_sd = 30;
% A.2 The decay rate of the masking skirt behind each peak
% (proportion per frame). A value closer to one means fewer
% peaks found.
%a_dec = 0.998;
a_dec = 1-0.01*(N/35);
% 0.999 -> 2.5
% 0.998 -> 5 hash/sec
% 0.997 -> 10 hash/sec
% 0.996 -> 14 hash/sec
% 0.995 -> 18
% 0.994 -> 22
% 0.993 -> 27
% 0.992 -> 30
% 0.991 -> 33
% 0.990 -> 37
% 0.98 -> 67
% 0.97 -> 97
% A.3 The maximum number of peaks allowed for each frame. In
% practice, this is rarely reached, since most peaks fall
% below the masking skirt
maxpksperframe = 5;
% A.4 The high-pass filter applied to the log-magnitude
% envelope, which is parameterized by the position of the
% single real pole. A pole close to +1.0 results in a
% relatively flat high-pass filter that just removes very
% slowly varying parts; a pole closer to -1.0 introduces
% increasingly extreme emphasis of rapid variations, which
% leads to more peaks initially.
hpf_pole = 0.98;
% B. The number of pairs made with each peak. All maxes within a
% "target region" following the seed max are made into pairs,
% so the larger this region is (in time and frequency), the
% more maxes there will be. The target region is defined by a
% freqency half-width (in bins)
targetdf = 31; % +/- 50 bins in freq (LIMITED TO -32..31 IN LANDMARK2HASH)
% .. and a time duration (maximum look ahead)
targetdt = 63; % (LIMITED TO <64 IN LANDMARK2HASH)
% The actual frequency and time differences are quantized and
% packed into the final hash; if they exceed the limited size
% described above, the hashes become irreversible (aliased);
% however, in most cases they still work (since they are
% handled the same way for query and reference).
verbose = 0;
% Convert D to a mono row-vector
[nr,nc] = size(D);
if nr > nc
D = D';
[nr,nc] = size(D);
end
if nr > 1
D = mean(D);
nr = 1;
end
% Resample to target sampling rate
targetSR = 8000;
if (SR ~= targetSR)
D = resample(D,targetSR,SR);
end
% Take spectral features
% We use a 64 ms window (512 point FFT) for good spectral resolution
fft_ms = 64;
fft_hop = 32;
nfft = round(targetSR/1000*fft_ms);
S = abs(specgram(D,nfft,targetSR,nfft,nfft-round(targetSR/1000*fft_hop)));
% convert to log domain, and emphasize onsets
Smax = max(S(:));
% Work on the log-magnitude surface
S = log(max(Smax/1e6,S));
% Make it zero-mean, so the start-up transients for the filter are
% minimized
S = S - mean(S(:));
% This is just a high pass filter, applied in the log-magnitude
% domain. It blocks slowly-varying terms (like an AGC), but also
% emphasizes onsets. Placing the pole closer to the unit circle
% (i.e. making the -.8 closer to -1) reduces the onset emphasis.
S = (filter([1 -1],[1 -hpf_pole],S')');
% Estimate for how many maxes we keep - < 30/sec (to preallocate array)
maxespersec = 30;
ddur = length(D)/targetSR;
nmaxkeep = round(maxespersec * ddur);
maxes = zeros(3,nmaxkeep);
nmaxes = 0;
maxix = 0;
%%%%%
%% find all the local prominent peaks, store as maxes(i,:) = [t,f];
%% overmasking factor? Currently none.
s_sup = 1.0;
% initial threshold envelope based on peaks in first 10 frames
sthresh = s_sup*spread(max(S(:,1:min(10,size(S,2))),[],2),f_sd)';
% T stores the actual decaying threshold, for debugging
T = 0*S;
for i = 1:size(S,2)-1
s_this = S(:,i);
sdiff = max(0,(s_this - sthresh))';
% find local maxima
sdiff = locmax(sdiff);
% (make sure last bin is never a local max since its index
% doesn't fit in 8 bits)
sdiff(end) = 0; % i.e. bin 257 from the sgram
% take up to 5 largest
[vv,xx] = sort(sdiff, 'descend');
% (keep only nonzero)
xx = xx(vv>0);
% store those peaks and update the decay envelope
nmaxthistime = 0;
for j = 1:length(xx)
p = xx(j);
if nmaxthistime < maxpksperframe
% Check to see if this peak is under our updated threshold
if s_this(p) > sthresh(p)
nmaxthistime = nmaxthistime + 1;
nmaxes = nmaxes + 1;
maxes(2,nmaxes) = p;
maxes(1,nmaxes) = i;
maxes(3,nmaxes) = s_this(p);
eww = exp(-0.5*(([1:length(sthresh)]'- p)/f_sd).^2);
sthresh = max(sthresh, s_this(p)*s_sup*eww);
end
end
end
T(:,i) = sthresh;
sthresh = a_dec*sthresh;
end
% Backwards pruning of maxes
maxes2 = [];
nmaxes2 = 0;
whichmax = nmaxes;
sthresh = s_sup*spread(S(:,end),f_sd)';
for i = (size(S,2)-1):-1:1
while whichmax > 0 && maxes(1,whichmax) == i
p = maxes(2,whichmax);
v = maxes(3,whichmax);
if v >= sthresh(p)
% keep this one
nmaxes2 = nmaxes2 + 1;
maxes2(:,nmaxes2) = [i;p];
eww = exp(-0.5*(([1:length(sthresh)]'- p)/f_sd).^2);
sthresh = max(sthresh, v*s_sup*eww);
end
whichmax = whichmax - 1;
end
sthresh = a_dec*sthresh;
end
maxes2 = fliplr(maxes2);
%% Pack the maxes into nearby pairs = landmarks
% Limit the number of pairs that we'll accept from each peak
maxpairsperpeak=3;
% Landmark is <starttime F1 endtime F2>
L = zeros(nmaxes2*maxpairsperpeak,4);
nlmarks = 0;
for i =1:nmaxes2
startt = maxes2(1,i);
F1 = maxes2(2,i);
maxt = startt + targetdt;
minf = F1 - targetdf;
maxf = F1 + targetdf;
matchmaxs = find((maxes2(1,:)>startt)&(maxes2(1,:)<maxt)&(maxes2(2,:)>minf)&(maxes2(2,:)<maxf));
if length(matchmaxs) > maxpairsperpeak
% limit the number of pairs we make; take first ones, as they
% will be closest in time
matchmaxs = matchmaxs(1:maxpairsperpeak);
end
for match = matchmaxs
nlmarks = nlmarks+1;
L(nlmarks,1) = startt;
L(nlmarks,2) = F1;
L(nlmarks,3) = maxes2(2,match); % frequency row
L(nlmarks,4) = maxes2(1,match)-startt; % time column difference
end
end
L = L(1:nlmarks,:);
if verbose
disp(['find_landmarks: ',num2str(length(D)/targetSR),' secs, ',...
num2str(size(S,2)),' cols, ', ...
num2str(nmaxes),' maxes, ', ...
num2str(nmaxes2),' bwd-pruned maxes, ', ...
num2str(nlmarks),' lmarks']);
end
% for debug return, return the pruned set of maxes
maxes = maxes2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Y = locmax(X)
% Y contains only the points in (vector) X which are local maxima
% Make X a row
X = X(:)';
nbr = [X,X(end)] >= [X(1),X];
% >= makes sure final bin is always zero
Y = X .* nbr(1:end-1) .* (1-nbr(2:end));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Y = spread(X,E)
% Each point (maxima) in X is "spread" (convolved) with the
% profile E; Y is the pointwise max of all of these.
% If E is a scalar, it's the SD of a gaussian used as the
% spreading function (default 4).
% 2009-03-15 Dan Ellis [email protected]
if nargin < 2; E = 4; end
if length(E) == 1
W = 4*E;
E = exp(-0.5*[(-W:W)/E].^2);
end
X = locmax(X);
Y = 0*X;
lenx = length(X);
maxi = length(X) + length(E);
spos = 1+round((length(E)-1)/2);
for i = find(X>0)
EE = [zeros(1,i),E];
EE(maxi) = 0;
EE = EE(spos+(1:lenx));
Y = max(Y,X(i)*EE);
end
Gracias, Un Saludo.
Patricia
function [L,S,T,maxes] = find_landmarks(D,SR,N)
% [L,S,T,maxes] = find_landmarks(D,SR,N)
% Make a set of spectral feature pair landmarks from some audio data
% D is an audio waveform at sampling rate SR
% L returns as a set of landmarks, as rows of a 4-column matrix
% {start-time-col start-freq-row end-freq-row delta-time}
% N is the target hashes-per-sec (approximately; default 5)
% S returns the filtered log-magnitude surface
% T returns the decaying threshold surface
% maxes returns a list of the actual time-frequency peaks extracted.
%
% REVISED VERSION FINDS PEAKS INCREMENTALLY IN TIME WITH DECAYING THRESHOLD
%
% 2008-12-13 Dan Ellis [email protected]
if nargin < 3; N = 7; end % 7 to get a_dec = 0.998
% The scheme relies on just a few landmarks being common to both
% query and reference items. The greater the density of landmarks,
% the more like this is to occur (meaning that shorter and noisier
% queries can be tolerated), but the greater the load on the
% database holding the hashes.
%
% The factors influencing the number of landmarks returned are:
% A. The number of local maxima found, which in turn depends on
% A.1 The spreading width applied to the masking skirt from each
% found peak (gaussian half-width in frequency bins). A
% larger value means fewer peaks found.
f_sd = 30;
% A.2 The decay rate of the masking skirt behind each peak
% (proportion per frame). A value closer to one means fewer
% peaks found.
%a_dec = 0.998;
a_dec = 1-0.01*(N/35);
% 0.999 -> 2.5
% 0.998 -> 5 hash/sec
% 0.997 -> 10 hash/sec
% 0.996 -> 14 hash/sec
% 0.995 -> 18
% 0.994 -> 22
% 0.993 -> 27
% 0.992 -> 30
% 0.991 -> 33
% 0.990 -> 37
% 0.98 -> 67
% 0.97 -> 97
% A.3 The maximum number of peaks allowed for each frame. In
% practice, this is rarely reached, since most peaks fall
% below the masking skirt
maxpksperframe = 5;
% A.4 The high-pass filter applied to the log-magnitude
% envelope, which is parameterized by the position of the
% single real pole. A pole close to +1.0 results in a
% relatively flat high-pass filter that just removes very
% slowly varying parts; a pole closer to -1.0 introduces
% increasingly extreme emphasis of rapid variations, which
% leads to more peaks initially.
hpf_pole = 0.98;
% B. The number of pairs made with each peak. All maxes within a
% "target region" following the seed max are made into pairs,
% so the larger this region is (in time and frequency), the
% more maxes there will be. The target region is defined by a
% freqency half-width (in bins)
targetdf = 31; % +/- 50 bins in freq (LIMITED TO -32..31 IN LANDMARK2HASH)
% .. and a time duration (maximum look ahead)
targetdt = 63; % (LIMITED TO <64 IN LANDMARK2HASH)
% The actual frequency and time differences are quantized and
% packed into the final hash; if they exceed the limited size
% described above, the hashes become irreversible (aliased);
% however, in most cases they still work (since they are
% handled the same way for query and reference).
verbose = 0;
% Convert D to a mono row-vector
[nr,nc] = size(D);
if nr > nc
D = D';
[nr,nc] = size(D);
end
if nr > 1
D = mean(D);
nr = 1;
end
% Resample to target sampling rate
targetSR = 8000;
if (SR ~= targetSR)
D = resample(D,targetSR,SR);
end
% Take spectral features
% We use a 64 ms window (512 point FFT) for good spectral resolution
fft_ms = 64;
fft_hop = 32;
nfft = round(targetSR/1000*fft_ms);
S = abs(specgram(D,nfft,targetSR,nfft,nfft-round(targetSR/1000*fft_hop)));
% convert to log domain, and emphasize onsets
Smax = max(S(:));
% Work on the log-magnitude surface
S = log(max(Smax/1e6,S));
% Make it zero-mean, so the start-up transients for the filter are
% minimized
S = S - mean(S(:));
% This is just a high pass filter, applied in the log-magnitude
% domain. It blocks slowly-varying terms (like an AGC), but also
% emphasizes onsets. Placing the pole closer to the unit circle
% (i.e. making the -.8 closer to -1) reduces the onset emphasis.
S = (filter([1 -1],[1 -hpf_pole],S')');
% Estimate for how many maxes we keep - < 30/sec (to preallocate array)
maxespersec = 30;
ddur = length(D)/targetSR;
nmaxkeep = round(maxespersec * ddur);
maxes = zeros(3,nmaxkeep);
nmaxes = 0;
maxix = 0;
%%%%%
%% find all the local prominent peaks, store as maxes(i,:) = [t,f];
%% overmasking factor? Currently none.
s_sup = 1.0;
% initial threshold envelope based on peaks in first 10 frames
sthresh = s_sup*spread(max(S(:,1:min(10,size(S,2))),[],2),f_sd)';
% T stores the actual decaying threshold, for debugging
T = 0*S;
for i = 1:size(S,2)-1
s_this = S(:,i);
sdiff = max(0,(s_this - sthresh))';
% find local maxima
sdiff = locmax(sdiff);
% (make sure last bin is never a local max since its index
% doesn't fit in 8 bits)
sdiff(end) = 0; % i.e. bin 257 from the sgram
% take up to 5 largest
[vv,xx] = sort(sdiff, 'descend');
% (keep only nonzero)
xx = xx(vv>0);
% store those peaks and update the decay envelope
nmaxthistime = 0;
for j = 1:length(xx)
p = xx(j);
if nmaxthistime < maxpksperframe
% Check to see if this peak is under our updated threshold
if s_this(p) > sthresh(p)
nmaxthistime = nmaxthistime + 1;
nmaxes = nmaxes + 1;
maxes(2,nmaxes) = p;
maxes(1,nmaxes) = i;
maxes(3,nmaxes) = s_this(p);
eww = exp(-0.5*(([1:length(sthresh)]'- p)/f_sd).^2);
sthresh = max(sthresh, s_this(p)*s_sup*eww);
end
end
end
T(:,i) = sthresh;
sthresh = a_dec*sthresh;
end
% Backwards pruning of maxes
maxes2 = [];
nmaxes2 = 0;
whichmax = nmaxes;
sthresh = s_sup*spread(S(:,end),f_sd)';
for i = (size(S,2)-1):-1:1
while whichmax > 0 && maxes(1,whichmax) == i
p = maxes(2,whichmax);
v = maxes(3,whichmax);
if v >= sthresh(p)
% keep this one
nmaxes2 = nmaxes2 + 1;
maxes2(:,nmaxes2) = [i;p];
eww = exp(-0.5*(([1:length(sthresh)]'- p)/f_sd).^2);
sthresh = max(sthresh, v*s_sup*eww);
end
whichmax = whichmax - 1;
end
sthresh = a_dec*sthresh;
end
maxes2 = fliplr(maxes2);
%% Pack the maxes into nearby pairs = landmarks
% Limit the number of pairs that we'll accept from each peak
maxpairsperpeak=3;
% Landmark is <starttime F1 endtime F2>
L = zeros(nmaxes2*maxpairsperpeak,4);
nlmarks = 0;
for i =1:nmaxes2
startt = maxes2(1,i);
F1 = maxes2(2,i);
maxt = startt + targetdt;
minf = F1 - targetdf;
maxf = F1 + targetdf;
matchmaxs = find((maxes2(1,:)>startt)&(maxes2(1,:)<maxt)&(maxes2(2,:)>minf)&(maxes2(2,:)<maxf));
if length(matchmaxs) > maxpairsperpeak
% limit the number of pairs we make; take first ones, as they
% will be closest in time
matchmaxs = matchmaxs(1:maxpairsperpeak);
end
for match = matchmaxs
nlmarks = nlmarks+1;
L(nlmarks,1) = startt;
L(nlmarks,2) = F1;
L(nlmarks,3) = maxes2(2,match); % frequency row
L(nlmarks,4) = maxes2(1,match)-startt; % time column difference
end
end
L = L(1:nlmarks,:);
if verbose
disp(['find_landmarks: ',num2str(length(D)/targetSR),' secs, ',...
num2str(size(S,2)),' cols, ', ...
num2str(nmaxes),' maxes, ', ...
num2str(nmaxes2),' bwd-pruned maxes, ', ...
num2str(nlmarks),' lmarks']);
end
% for debug return, return the pruned set of maxes
maxes = maxes2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Y = locmax(X)
% Y contains only the points in (vector) X which are local maxima
% Make X a row
X = X(:)';
nbr = [X,X(end)] >= [X(1),X];
% >= makes sure final bin is always zero
Y = X .* nbr(1:end-1) .* (1-nbr(2:end));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Y = spread(X,E)
% Each point (maxima) in X is "spread" (convolved) with the
% profile E; Y is the pointwise max of all of these.
% If E is a scalar, it's the SD of a gaussian used as the
% spreading function (default 4).
% 2009-03-15 Dan Ellis [email protected]
if nargin < 2; E = 4; end
if length(E) == 1
W = 4*E;
E = exp(-0.5*[(-W:W)/E].^2);
end
X = locmax(X);
Y = 0*X;
lenx = length(X);
maxi = length(X) + length(E);
spos = 1+round((length(E)-1)/2);
for i = find(X>0)
EE = [zeros(1,i),E];
EE(maxi) = 0;
EE = EE(spos+(1:lenx));
Y = max(Y,X(i)*EE);
end
Valora esta pregunta


0