ode113 y cinetica quimica - Undefined function or variable 'x'.
Publicado por Edmundo (8 intervenciones) el 03/02/2019 22:58:49
Hola muy buenos dias si alguien me podria ayudar a resolver este codigo seria de gran ayuda, la verdad no puedo encontrar el error, es que tengo que incluir @ en las funciones.
-------------------------------------------------------------------------------------------------------------------------------------------------------
El error que me aparece es:
Undefined function or variable 'x'.
Error in bengurion1 (line 29)
MT=((M1*x(1)+M2*x(2)+M3*x(3)+M4*x(4)+M5*x(5)+M6*x(6)+M7*x(7)+M8*x(8)+M9*x(9)+M10*x(10)+M11*x(11)+M12*x(12)));
>>
-------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------
El error que me aparece es:
Undefined function or variable 'x'.
Error in bengurion1 (line 29)
MT=((M1*x(1)+M2*x(2)+M3*x(3)+M4*x(4)+M5*x(5)+M6*x(6)+M7*x(7)+M8*x(8)+M9*x(9)+M10*x(10)+M11*x(11)+M12*x(12)));
>>
-------------------------------------------------------------------------------------------------------------------------------------------------------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
clear
clc
%Parametros
R=8.3144598; %j/mol*°K
% condiciones
T=320; %Temperatur im °K
pt=20; % Druck im bar
WHSV=6; %h^-1
% Condiciones iniciales
x0=[0.25,0.75,0,0,0,0,0,0,0,0,0,0]; %vector inicial de x
tf=1/WHSV; %Zeit am ende in h
%Molar masa %g/mol
M1=44.0095; %CO2
M2=2.01588; %H2
M3=28.0101; %CO
M4=18.01528; %H2O
M5=16.04246; %CH4
M6=28.05316; %C2H4
M7=42.07974; %C3H6
M8=44.09562; %C3H8
M9=56.10632; %C4H8
M10=70.1329; %C5H10
M11=140.2658; %C10H20
M12=88.10512; %C4H8O2
MT=((M1*x(1)+M2*x(2)+M3*x(3)+M4*x(4)+M5*x(5)+M6*x(6)+M7*x(7)+M8*x(8)+M9*x(9)+M10*x(10)+M11*x(11)+M12*x(12)));
%constantes de velocidad
k1=(5.5E6)*exp(-72.2E3/(R*(T))); % mol/(g*h*MPa^2)
k2=(1.1E9)*exp(-98E3/(R*(T))); % mol/(g*h*MPa^1.2)
k3=(1.2E4)*exp(-45E3/(R*(T))); % mol/(g*h*MPa^1.2)
k4=(1.2E5)*exp(-53.6E3/(R*(T))); % mol/(g*h*MPa^1.2)
k5=(1.8E4)*exp(-46.4E3/(R*(T))); % mol/(g*h*MPa^1.2)
k6=(1.1E3)*exp(-31.5E3/(R*(T))); % mol/(g*h*MPa^1.2)
k7=(9.0E2)*exp(-31.5E3/(R*(T))); % mol/(g*h*MPa^1.2)
k8=(4E3)*exp(-33.4E3/(R*(T))); % mol/(g*h*MPa^1.2)
k9=(3.6E3)*exp(-31.5E3/(R*(T))); % mol/(g*h*MPa^1.2)
k10=(2.7E3)*exp(-25.8E3/(R*(T))); % mol/(g*h*MPa^1.3)
k11=(1.4E4)*exp(-35.5E3/(R*(T))); % mol/(g*h*MPa^1.8)
k12=(3.7E4)*exp(-40.7E3/(R*(T))); % mol/(g*h*MPa^1.6)
k13=(6.0E7)*exp(-88.8E3/(R*(T))); % mol/(g*h*MPa^1.3)
%Adsorptionskonstante
K1=(2.10E-2)*exp(-33.4E3/(R*(T)));
K4=(2.40E-2)*exp(-31.5E3/(R*(T)));
%Konstante de equilibrio
Keqr=10^((2073/T)-2.029);
Keq=1/Keqr;
%velocidades de reaccion
r1=k1*(((x(1)*x(2))-(x(3)*x(4)/Keq))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^2);
r2=k2*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r3=k3*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r4=k4*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r5=k5*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r6=k6*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r7=k7*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r8=k8*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r9=k9*((x(3)*(x(2)^0.2))/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.2);
r10=k10*((x(6)^1.3)/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.3);
r11=k11*((x(7)^1.8)/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.8);
r12=k12*((x(9)^1.6)/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.6);
r13=k13*((x(10)^1.3)/(1+(K4*x(4)*pt)+(K1*x(1)*pt)))*(pt^1.3);
%Feedstock
nco2=1;
nh2=3;
nt=nco2+nh2;
mt=(nco2/nt*(M1)+nh2/nt*(M2));
wco2=(nco2*(M1)/mt);
%Faktor
F=@(x)MT*wco2;
%Funcion de las ecuaciones diferenciales
fg=@(t,x) ([F*r1;...
F*(-r1-3*r2-2*r3-2*r4-7/3*r5-2*r6-2*r7-2*r8-6/4*r9);...
F*(r1-r2-r3-r4-r5-r6-r7-r8-r9);...
F*(r1+r2+r3+r4+r5+r6+r7+r8+(2/4*r9));...
F*(r2);...
F*(1/2*r3-r10);...
F*(1/3*r4-r11);...
F*(1/3*r5);...
F*(1/4*r6-r12);...
F*(1/5*r7-r13);...
F*(1/10*r8+1/5*r10+1/3.3*r11+1/2.5*r12+1/2*r13);...
F*(1/4*r9)]);
%Lösung
[t,x]=ode113(fg,[0,tf],x0);
plot(x,y)
grid on
xlabel('t')
ylabel('x,y');
title('Ben-Gurion Model')
Valora esta pregunta


0