Estadísticas del código: Descenso Gradiente Batch-Error Cuadrático MSE - Python

Imágen de perfil

Descenso Gradiente Batch-Error Cuadrático MSE


Python

Publicado el 11 de Septiembre del 2023 por Hilario (127 códigos)
430 visualizaciones desde el 11 de Septiembre del 2023
Hilario Iglesias Martínez.

DescensoGradienteAula-F876.py

El descenso de gradiente tipo "Batch" (también conocido como descenso de gradiente en lotes) es uno de los algoritmos de optimización más utilizados en el aprendizaje automático y la optimización numérica. Este algoritmo se utiliza para minimizar una función de pérdida (también llamada función de costo) al ajustar los parámetros de un modelo de aprendizaje automático. El objetivo principal del descenso de gradiente es encontrar los valores de los parámetros que minimizan la función de pérdida.

Aquí te explico cómo funciona el descenso de gradiente tipo Batch:

Inicialización de parámetros: Se comienza con valores iniciales para los parámetros del modelo. Esto puede ser aleatorio o basado en algún conocimiento previo.

Selección de un lote (batch): En cada iteración del algoritmo, se selecciona un conjunto de ejemplos de entrenamiento del conjunto de datos. Este conjunto de ejemplos se denomina "lote" o "batch". En el descenso de gradiente tipo Batch, se utilizan todos los ejemplos de entrenamiento en cada iteración, es decir, el tamaño del lote es igual al tamaño completo del conjunto de entrenamiento.

Cálculo del gradiente: Para el lote seleccionado, se calcula el gradiente de la función de pérdida con respecto a los parámetros del modelo. El gradiente representa la dirección y la magnitud en la que debe ajustarse cada parámetro para reducir la pérdida.

Actualización de parámetros: Se ajustan los parámetros del modelo en la dirección opuesta al gradiente calculado. Esto se hace multiplicando el gradiente por una tasa de aprendizaje (learning rate) y restando el resultado de los parámetros actuales. La tasa de aprendizaje controla qué tan grande es el paso que se da en cada iteración.

Iteración: Se repiten los pasos 2 a 4 durante un número fijo de iteraciones o hasta que se alcance algún criterio de convergencia (como una pequeña disminución en la función de pérdida o un número máximo de iteraciones).

El proceso se repite hasta que se considera que el modelo ha convergido o alcanzado una solución aceptable.

El descenso de gradiente tipo Batch tiene algunas ventajas, como la convergencia más estable y la posibilidad de aprovechar la paralelización en el hardware moderno. Sin embargo, también puede ser más lento en comparación con variantes más rápidas como el descenso de gradiente estocástico (SGD) o el descenso de gradiente mini-batch, que utilizan subconjuntos más pequeños de los datos en cada iteración. La elección del algoritmo de descenso de gradiente depende de la naturaleza del problema y de las características del conjunto de datos.
****************************************************************************************************************
El Error Cuadrático Medio (MSE, por sus siglas en inglés, Mean Squared Error) es una métrica comúnmente utilizada en estadísticas y machine learning para evaluar el rendimiento de un modelo de regresión o de predicción. MSE se utiliza para medir la calidad de las predicciones de un modelo al calcular la media de los cuadrados de las diferencias entre los valores predichos por el modelo y los valores reales (observados) en un conjunto de datos.

La fórmula del MSE se expresa de la siguiente manera:

MSE = (1/n) Σ(yi - ŷi)²

Donde:

MSE es el Error Cuadrático Medio.
n es el número de muestras en el conjunto de datos.
yi representa el valor real u observado de la muestra i.
ŷi representa el valor predicho por el modelo para la muestra i.
En otras palabras, para calcular el MSE, se toma la diferencia entre el valor predicho y el valor real para cada punto de datos, se eleva al cuadrado, y luego se calcula el promedio de todas estas diferencias al cuadrado.


El MSE es útil para determinar cuán bien se ajusta un modelo de regresión a los datos, y se prefiere minimizarlo. Cuanto menor sea el MSE, mejor será el ajuste del modelo a los datos. Sin embargo, es importante recordar que el MSE puede verse afectado por valores atípicos en los datos y puede no ser la métrica más apropiada en todos los casos. En algunos escenarios, como la detección de valores atípicos, otras métricas como el Error Absoluto Medio (MAE) o el Error Cuadrático Medio Raíz (RMSE) pueden ser más adecuadas.

78 visualizaciones durante los últimos 90 días


9
0